BAUPHYSIKALISCHE NACHWEISE

Projekt	Feuerw_1Zone
Gebäudeteil Ort Strasse Gemarkung Flurstück	Feuerwehr Kreuzbruch
Baujahr	2008
Bauherr	Stadt Liebenwalde Am Markt 20 16559 Liebenwalde
Entwurfsverfasser	DRITTE Haut-Architekten DiplIng. Peter Garkisch Bölschestraße 18 12587 Berlin Tel.: 030-6409-1744
Statik	
Aufsteller	DiplIng. (FH) Jens Liebig Koppenstr. 79 10243 Berlin
aufgestellt den	09.02.2008

Energetische Bewertung von Nichtwohngebäuden

Maßgebende Normen und Verordnungen:

DIN V 18599-1 Energetische Bewertung von Gebäuden, Allgemeine Bilanzierungsmethodik

DIN V 18599-2 Jahresheizwärme- und Jahreskühlbedarf von Gebäudezonen

DIN V 18599-3 Nutzenergiebedarf für die energetische Luftaufbereitung

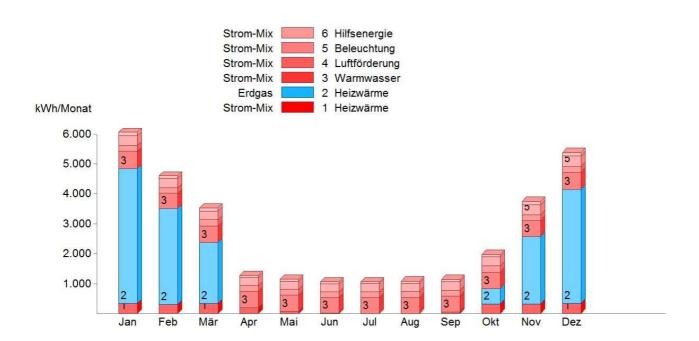
DIN V 18599-4 Nutz- und Endenergiebedarf für Beleuchtung

DIN V 18599-5 Endenergiebedarf der Heizsysteme

DIN V 18599-7 Endenergiebedarf der RLT- und Klimakältesysteme

DIN V 18599-8 Berechnung der Warmwassersysteme

DIN V 18599-9 BHKW-Anlagen


DIN V 18599-10 Nutzungsrandbedingungen

DIN EN ISO 13789 Spezifischer Transmissionswärmeverlustkoeffizient

DIN EN ISO 13370 Wärmeübertragung über das Erdreich

Projekt: Feuerw_1Zone

Endenergiebedarf nach Energieträgern

Nachweisverfahren: Ein-Zonen-Modell für Nichtwohngebäude nach EnEV 2007, §4 und Anlage 2, Nr.2.3.3 zur Begrenzung des Jahres-Primärenergiebedarfs und des spezifischen, auf die Umfassungsfläche bezogenen Transmissionswärmetransferkoeffizienten in Gewerbebetrieben mit nicht mehr als 1.000 m² Nettogrundfläche und einer Hauptnutzung, die mehr als 2/3 der Nettogrundfläche belegt

Klimadaten für den Gebäudestandort "Deutschland"

1.0 Geplante Gebäudezonen (DIN V 18599-1)

Betrachtungsmonat Januar, $\vartheta_e = -1.3 \, \text{°C}$

Zone	Тур	t _{nutz} d/a	ϑ _i °C	ϑi,WE °C	A _{NGF} m²	V m³
<1> Gesamtgebäude	Klassenzimmer	200	19,2	17,0	348	1102
					348	1.102

Typ = Nutzungstyp nach DIN V 18599-10, Tabelle 4

2.0 Transmissionswärmetransfer (DIN V 18599-2)

Transferkoeffizienten H_T aus der Hüllflächentabelle nach DIN V 18599, T2

Hüllfläche		Zone	A [m²]	U [W/m²K]	F _X [-]	Anmerkung	H _T [W/K]
EG							
1 F 0111 FD	-	1:0	33,5	0,22 A	1,00 F _D	02	7,3
40 F 0112 FD	0	1:0	9,7	- B	$1,00~{ m F}_{ m F}$	02	
2 F 0101 FAW Ost	0	1:0	19,4	0,28 AW	1,00 F _{AW}	02	5,4
3 F 0102 FAW Nord	N	1:0	2,7	0,28 AW	1,00 F _{AW}	02	0,7
4 F 0103 FAW Ost	0	1:0	2,6	0,28 AW	1,00 F _{AW}	02	0,7
5 F 0106 FAW Nord	N	1:0	2,6	0,28 AW	1,00 F _{AW}	02	0,7
6 F 0107 FAW Ost	0	1:0	13,3	0,28 AW	1,00 F _{AW}	02	3,7
7 F 0108 FAW Nord	N	1:0	24,9	0,28 AW	1,00 F _{AW}	02	6,9
8 F 0109 FAW West	W	1:0	44,2	0,28 AW	1,00 F _{AW}	02	12,2
9 F 0110 FAW Süd	\mathcal{S}	1:0	36,9	0,28 AW	1,00 F _{AW}	02	10,2
10 A 0108 FF Nord	N	1:0	2,1	1,43 B	1,00 F _F	02	2,9
11 A 0109 FF West	W	1:0	1,5	1,43 B	$1,00~{ m F}_{ m F}$	02	2,1
12 W 0110 FF Süd	$\mathcal S$	1:0	1,1	1,43 B	1,00 $F_{ m F}$	02	1,6
13 T 0103 FAW Ost ,	0	1:0	2,1	2,00 D	1,00 F _{AW}	02	4,3
$14\ \mathrm{T}\ 0106\ \mathrm{FAW}\ \mathrm{Nord}$,	N	1:0	2,1	2,00 D	1,00 F _{AW}	02	4,3
15 T 0107 FAW Ost ,	0	1:0	2,1	2,00 D	1,00 F _{AW}	02	4,3
16 T 0110 FAW Süd ,	$\mathcal S$	1:0	3,9	2,00 D	1,00 F _{AW}	02	7,9
17 F 0100 FG	-	1:0	178,8	0,27 E	0,50 F _G	25 14	24,1
Garage							
18 F 0209 FD	-	1:0	68,0	0,22 A	1,00 F_{D}	02	15,0
19 F 0201 FAW Ost	0	1:0	14,4	0,16 AW	1,00 F _{AW}	02	2,4
20 F 0202 FAW Nord	N	1:0	39,3	0,16 AW	1,00 F _{AW}	02	6,5
21 F 0203 FAW West	W	1:0	17,9	0,16 AW	1,00 F _{AW}	02	2,9
22 F 0205 FAW West	W	1:0	2,9	0,16 AW	1,00 F _{AW}	02	0,5
23 F 0206 FAW Süd	$\mathcal S$	1:0	3,5	0,16 AW	1,00 F _{AW}	02	0,6
24 F 0208 FAW Süd	$\mathcal S$	1:0	29,8	0,16 AW	1,00 F _{AW}	02	4,9
25 A 0202 FF Nord	N	1:0	4,0	1,43 B	1,00 F _F	02	5,6
26 A 0208 FF Süd	\mathcal{S}	1:0	1,6	1,43 B	1,00 F _F	02	2,3
27 T 0201 FAW Ost ,	0	1:0	13,1	1,01 G	1,00 F _{AW}	02	13,3
28 F 0200 FG	-	1:0	68,0	0,37 Н	0,50 F _G	25 14	12,7
OG							
29 F 0305 FD	-	1:0	141,5	0,15 I	1,00 F_D	02	21,7

 t_{nutz} = Nutzungstage / Jahr \Rightarrow Nutzungsanteile für den Regel- und Wochenendbetrieb

ANGF = Nettogrundfläche / V = Nettoluftvolumen

 $[\]vartheta_{i}$ = mittlere Innentemperatur für Januar, ggf. bei eingeschränktem Heizbetrieb

 $[\]vartheta_{i,WE}$ = mittlere Innentemperatur im Wochenendbetrieb

 $[\]vartheta_{\hat{l}}=\vartheta_{\hat{l},\hat{h}}$ unter Berücksichttigung einer Nachtabsenkung nach DIN V 18599-2, Gl. 27 und 28

				Σ	A [m²] =	970,7		Σ H $_{ m T}$ [W	/K] =	334,1
39	W	0303	FF	West	W	1:0	4,0	1,43 B	1,00 F _F	02	5,7
38	W	0301	FF	Ost	0	1:0	3,5	1,43 B	1,00 F_{F}	02	5,0
37	Α	0304	FF	Süd	${\mathcal S}$	1:0	16,6	1,43 B	$1,00 \mathrm{F_F}$	02	23,6
36	Α	0303	FF	West	W	1:0	18,9	1,43 B	1,00 F _F	02	27,0
35	Α	0302	FF	Nord	N	1:0	1,6	1,43 B	1,00 F _F	02	2,2
34	Α	0301	FF	Ost	0	1:0	18,9	1,43 B	1,00 F _F	02	27,0
33	F	0304	FAV	W Süd	${\mathcal S}$	1:0	16,7	0,47 J	1,00 F _{AW}	02	7,8
32	F	0303	FA	W West	W	1:0	35,4	0,47 J	1,00 F _{AW}	02	16,5
31	F	0302	FAV	W Nord	N	1:0	31,7	0,47 J	1,00 F _{AW}	02	14,8
30	F	0301	FAV	W Ost	0	1:0	35,9	0,47 J	1,00 F _{AW}	02	16,8

Bodenplattenmaß B' = $A_G / (0.5 P) = 247 / 46 = 5,35 m (DIN V 4108-6, E.3)$

Anmerkungen zur Hüllflächen-Tabelle

- 01 Temperatur-Korrekturfaktoren (F_X-Faktoren) nach DIN V 18599-2, Tab.2
- 02 Die solaren Gewinne werden gesondert ermittelt (siehe unten).
- 14 Bodenplatte auf Erdreich ohne Randdämmung.
- 25 Fx-Tabellenwert für das Bodenplattenmaß B' nach EN ISO 13370.

2.1 Wärmebrücken

Berechnung mit pauschalem Zuschlag $\Delta U_{WB} = 0.05 \text{ W/m}^2\text{K}$ (gleichwertig zu DIN 4108 Bbl.2)

2.2 Transferkoeffizienten

Transferkoeffizienten Transmission	H _T ,D W/K	H _{T,s} W/K	^H T,iu W/K	Σ H $_{ m T}$ W/K	H _{T,iz} W/K	
<1> Gesamtgebäude	333	37	0	370	0	
	333	37		370		

 $H_{T,D} = \sum A_i^* U_i + \Delta U_{WB} * \sum A = W \ddot{a}rmetransferkoeffizient zur Außenluft, Bauteile + W \ddot{a}rmebr \ddot{u}cken$

 $H_{T,S} = \sum F_x A_i U_i = W$ ärmetransferkoeffizient über das Erdreich, alternativ L_S -Wert aus der Bauteilberechnung

 $H_{T,iu} = \Sigma F_x^* A_j^* U_j = W$ ärmetransferkoeffizient zum unbeheizten Bereich

 $H_{T,iZ} = \sum A_i^* U_i = W$ ärmetransferkoeffizient zu angrenzenden Gebäudezonen

spezifischer, auf die Umfassungsflächen bezogener Transmissionswämetransferkoeffizient $H'_{T,vorh} = (H_{T,D} + Fx * H_{T,iu} + Fx * H_{T,s}) / A = 370,2 / 970,7 =$ **0,38 W/m²K**

Bauteile der thermischen Gebäudehülle

Bauteil		U-Wert W/m²K	Fläc m²	che A	A	Wärme W/K	verlu	ıst
Warmdach	А	0,22	33	3	%	7	2	%
Fenster-1,43	B	0,00	83	9	%	105	31	%
AW AW	AW	0,28	147	15	%	41	12	%
Aussentür,Holz1	D	2,00	10	1	%	21	6	%
Kellerdecke	E	0,27	179	18	용	24	7	왕
Sparrendach, TrapezblechGarage	\boldsymbol{A}	0,22	68	7	용	15	4	왕
Aussenwand_GarageAW AW_G	AW	0,16	108	11	%	18	5	용

Aussentür,PU-Kern KellerbodenGarage	G H	1,01 0,37	13 68	1 7	•	13 13	_	00 00
Sparrendach, Trapezblech	I	0,15	141	15	%	22	7	%
Holztafelbau,Sperrholz	J	0,47	120	12	%	56	17	%
			971	100	8	334	100	%

Interne Berechnung mit reellen Zahlen, Zwischenergebnisse sind auf ganze Zahlen gerundet. Wärmeverluste ohne Wärmebrückenzuschlag

3.0 Lüftungswärmetransfer (DIN V 18599-2)

Gebäudedichtheit Regelwert, Kategorie I, mit Dichtheitsprüfung / RLT-Anlage (T2, Tab.4), n₅₀ = 1,00 h⁻¹

Windschutzkoeffizienten für mittlere Abschirmung, mehr als eine exponierte Fassade $e_{wind} = 0.07 f_{wind} = 15,00 \text{ (EN ISO 13790 Tab.G4)}$

Luftaustausch zwischen Gebäudezonen: vernachlässigbar oder Temperaturdifferenz ≤ 4K

Zone	n50		Luftwec	hsel	Fenster	Lüftungsanlage	
	h-1	V _A m³/m²h	n _{nutz}	n _{inf}	n _{win} h-1	nmech h-1	t _{V,mech}
<pre><1> Gesamtgebäude ⇒ WE-Betrieb</pre>	1,00	10,00	3,16	0,07	0,10	3,16	9
<1> Gesamtgebäude		0,00	0,00	0,07	0,10	-	-

RLT-Anlage <1> mit V_{mech} = 3482 m³/h, V^* = 3482 m³/h, zeit- / nutzungsabhängig, balanciert

VA = Außenluftvolumenstrom während der Nutzungsstunden, Mindestwert

n_{nutz} = Mindestaußenluftwechsel = V_A * A_{NGF} / V während der Nutzungsstunden (Nichtwohngebäude)

 n_{inf} = Infiltrationsluftwechsel = n_{50} * e_{wind} oder mit RLT n_{inf} = n_{50} * e_{wind} * (1 + $f_{V,mech}$ * $t_{V,mech}$ / 24)

fv.mech = Bewertungsfaktor für die Infiltration bei nicht balancierten RLT-Anlagen nach Gl.62/63

 n_{win} = Fensterluftwechsel = 0.1 + Δn_{win} * t_{nutz} / 24 oder (mit RLT) n_{win} = 0.1 + $\Delta n_{win,mech}$ * $t_{v,mech}$ / 24

 $\Delta n_{win} = n_{nutz} - (n_{nutz} - 0.2)^* \ n_{inf} \ -0.1 \ (ohne \ RLT), \ falls \ n_{nutz} > 1.2 \ \Rightarrow \ \Delta n_{win} = n_{nutz} - n_{inf} \ -0.1 \ (ohne \ RLT), \ falls \ n_{nutz} > 1.2 \ \Rightarrow \ \Delta n_{win} = n_{nutz} - n_{inf} \ -0.1 \ (ohne \ RLT)$

n_{mech} = n_{mech,ZUL} = Zuluft-Luftwechselzahl mechanisch während der Nutzungsstunden

Hinweis: n_{inf} und n_{win} sind die Luftwechsel im Tagesmittel (Nutzungs- und Nichtnutzungsstunden)

Volumenströme V_{mech} und V* (Auslegung) siehe Abschnitt "RLT-Systeme"

Transferkoeffizienten Lüftung	^H V,z,Jan W/K	H _V ,inf W/K	H _{V,win} W/K	Σ H $_{ m W}$	HV,mech W/K	ϑ _V °C
<1> Gesamtgebäude	0	26	37	64	444	17,0
⇒ WE-Betrieb <1> Gesamtgebäude	0	26	37	64	0	

 $H_{V,Z}$ = V * 0.34 [W/K] = Wärmetransferkoeffizient Lüftung zu angrenzenden Zonen, monatlich

 H_V = Wärmetransferkoeffizient Lüftung = n * V * $c_{p,a}$ * ρ_a = n * V * 0.34 [W/K]

 Σ H_V = H_{V,z,Jan} + H_{V,inf} + H_{V,win}, Transferkoeffizienten ohne RLT

ϑ_V = Zulufttemperatur der RLT-Anlage für Januar, sh. "RLt-Systeme"

Summenbildung unter Berücksichtigung der Zonen-Nutzungsanteile für Regel- und WE-Betrieb

4.0 Solare Wärmequellen (DIN V 18599-2)

4.1 Solare Wärmeeinträge über Fenster

Bauliche Verschattung aus Horizontwinkel α_h , Überhangwinkel α_o und Seitenwinkel α_f Abminderungsfaktoren $F_S = F_h * F_o * F_f$ nach DIN V 18599-2, Anhang A für Januar (Winter)

Kollektorfläche	Zone	A [m²]		Neigung	$\alpha_{\rm h}$	α_{O}	α_{f}	F_S
10 A 0108 FF Nord	1	2,1	Nord	90°	0°	0°	0°	1,00
11 A 0109 FF West	1	1,5	West	90°	0 °	0 °	0 °	1,00
12 W 0110 FF Süd	1	1,1	Süd	90°	0 °	0 °	0 °	1,00
25 A 0202 FF Nord	1	4,0	Nord	90°	0 °	0 °	0 °	1,00
26 A 0208 FF Süd	1	1,6	Süd	90°	0 °	0 °	0 °	1,00
34 A 0301 FF Ost	1	18,9	Ost	90°	0 °	0 °	0 °	1,00
35 A 0302 FF Nord	1	1,6	Nord	90°	0 °	0 °	0 °	1,00
36 A 0303 FF West	1	18,9	West	90°	0 °	0 °	0 °	1,00
37 A 0304 FF Süd	1	16,6	Süd	90°	0 °	0 °	0 °	1,00
38 W 0301 FF Ost	1	3,5	Ost	90°	0 °	0 °	0 °	1,00
39 W 0303 FF West	1	4,0	West	90°	0 °	0 °	0 °	1,00
Kollektorfläche	Zone	$F_{ m F}$	FV	g⊥	9eff,₩i		I _S ,Jan W/m²	Qs,Jan kWh/d
10 A 0108 FF Nord	1	0,70	0,90	0,60	0,53	1600	14	0,3
11 A 0109 FF West	1	0,70	0,90	0,60	0,53	1600	25	0,3
12 W 0110 FF Süd	1	0,70	0,90	0,60	0,53	1600	56	0,6
25 A 0202 FF Nord	1	0,70	0,90	0,60	0,53	1600	14	0,5
26 A 0208 FF Süd	1	0,70	0,90	0,60	0,53	1600	56	0,8
34 A 0301 FF Ost	1	0,70	0,90	0,60	0,53	1600	25	4,2
35 A 0302 FF Nord	1	0,70	0,90	0,60	0,53	1600	14	0,2
36 A 0303 FF West	1	0,70	0,90	0,60	0,53	1600	25	4,2
37 A 0304 FF Süd	1	0,70	0,90	0,60	0,53	1600	56	8,2
38 W 0301 FF Ost	1	0,70	0,90	0,60	0,53	1600	25	0,8
39 W 0303 FF West	1	0,70	0,90	0,60	0,53	1600	25	0,9

20,8

 Q_S = Strahlungsgewinn pro Tag = A * F_F * g_{eff} * I_S * t mit g_{eff} = f(F_S , F_w , g_{\perp}) (DIN V 18599-2 Abs.6.4) verwendete Verglasungen und Sonnenschutzvorrichtungen ... 1600 0.65 MSIV 2fach, U-Wert 1.2, ohne Sonnenschutz g_{tot} = 0,65, τ_{D65} = 0,78

F_S = Faktor für die bauliche Verschattung (Horizontwinkel, Überstände und Auskragungen)

F_F = Fensterflächenanteil (1 - Rahmenanteil)

F_W = Minderung für schrägen Strahlungseinfall (Standardwert 0.90)

F_V = Minderung für die Verschmutzung der Scheiben

 g_{eff} = F_S * F_W * F_V * g_{tot} = wirksamer Gesamtenergiedurchlassgrad der Verglasung

 g_{tot} = g-Wert der Verglasung inklusive Sonnenschutz (Tab.5), ohne Sonnenschutz gilt g_{tot} = g_{\perp}

Bewegliche Sonnenschutzvorrichtungen in Nichtwohnzonen werden parallel zur baulichen Verschattung mit

 $g_{eff} = F_W * F_V * F_S * (a * g_{tot} + (1-a) * g_{\perp})$ bewertet (Gl. 103), der kleinere Wert g_{eff} ist maßgebend

 $a_{Wi} \ / \ a_{S0} = Parameter \ (0..1) \ f\"{u}r \ die \ zeitliche \ Aktivierung \ der \ Sonnenschutzvorrichtung \ nach \ Tab \ A.4 \ / \ A.5$

4.2 Solare Wärmeeinträge über opake Hüllflächen

Hüllfläche	Zone	A m²	U W/m²K	α	h _r W∕m²K	IS,Jan W/m²	Qs,Jan kWh/d
1 F 0111 FD	1	33,5	0,22	0,50	4,50	33	-0,2
40 F 0112 FD	1	9,7	0,00	0,50	4,50	33	-
2 F 0101 FAW Ost	1	19,4	0,28	0,50	4,50	25	-0,2
3 F 0102 FAW Nord	1	2,7	0,28	0,50	4,50	14	0,0

4	F	0103	FAW	Ost	1	2,6	0,28	0,50	4,50	25	0,0
5	F	0106	FAW	Nord	1	2,6	0,28	0,50	4,50	14	0,0
6	F	0107	FAW	Ost	1	13,3	0,28	0,50	4,50	25	-0,1
7	F	0108	FAW	Nord	1	24,9	0,28	0,50	4,50	14	-0,3
8	F	0109	FAW	West	1	44,2	0,28	0,50	4,50	25	-0,4
9	F	0110	FAW	Süd	1	36,9	0,28	0,50	4,50	56	-0,2
13	Т	0103	FAW	Ost , T	1	2,1	2,00	0,50	4,50	25	-0,1
14	Т	0106	FAW	Nord ,	1	2,1	2,00	0,50	4,50	14	-0,2
15	Т	0107	FAW	Ost , T	1	2,1	2,00	0,50	4,50	25	-0,1
16		0110		•	1	3,9	2,00	0,50	4,50	56	-0,1
18	F	0209	FD	•	1	68,0	0,22	0,50	4,50	33	-0,4
19	F	0201	FAW	Ost	1	14,4	0,16	0,50	4,50	25	-0,1
20	F	0202	FAW	Nord	1	39,3	0,16	0,50	4,50	14	-0,2
21	F	0203			1	17,9	0,16	0,50	4,50	25	-0,1
22	F	0205	FAW	West	1	2,9	0,16	0,50	4,50	25	0,0
23	F	0206	FAW	Süd	1	3,5	0,16	0,50	4,50	56	0,0
24	F	0208	FAW	Süd	1	29,8	0,16	0,50	4,50	56	-0,1
27	Т	0201	FAW	Ost , T	1	13,1	1,01	0,50	4,50	25	-0,4
29	F	0305	FD	-	1	141,5	0,15	0,50	4,50	33	-0,6
30	F	0301	FAW	Ost	1	35,9	0,47	0,50	4,50	25	-0,5
31	F	0302	FAW	Nord	1	31,7	0,47	0,50	4,50	14	-0,5
32	F	0303	FAW	West	1	35,4	0,47	0,50	4,50	25	-0,5
33	F	0304	FAW	Süd	1	16,7	0,47	0,50	4,50	56	-0,1

-5,5

$$Q_{S,op} = R_{se} * U * A * (\alpha * I_S - F_f * h_r * \Delta \vartheta_{er}) * t (DIN v 18599-2, GI.105)$$

 α = Strahlungs-Absorptionsgrad (Tab.6), abhängig von der Bauteiloberfläche

 I_S = globale Sonneneinstrahlung, jahreszeit-, neigungs- und orientierungsabhängig [W/m²]

 F_f = Formfaktor zwischen Bauteil und Himmel (bis 45° Neigung = 1, über 45° = 0.50)

 h_{Γ} = äußerer Abstrahlungskoeffizient, Regelwert = 5 * Emissionsgrad = 5 * 0.8 = 4 W/m²K

 $\Delta \vartheta_{
m er}$ = scheinbare, mittlere Temperaturdifferenz zwischen Bauteil und Himmel (10 K)

4.3 solare Wärmegewinne

Zone	Sep kWh	Okt kWh	Nov kWh	Dez kWh	Jan kWh	Feb kWh	Mär kWh	Jahr kWh
<1> Gesamtgebä	1.821	1.061	502	184	474	639	1.088	19.241
	1.821 Apr	1.061 Mai	502 Jun	184 Jul	474 Aug	639	1.088	
	2.494	2.615	2.925	3.136	2.302			19.241

Prozesskennwerte "solare Wärmegewinne" in [kWh/m²a]

<1> Gesamtgebäude: 55,3

5.0 Interne Wärme- und Kältequellen (DIN V 18599-2)

Zone	A _B m²	q _{I,p} kWh/d	qI,fac kWh/d	QI,g kWh/d	Q _I kWh/d
<pre><1> Gesamtgebäude ⇒ WE-Betrieb</pre>	348	34,8	7,0	0,0	41,8
<pre><1> Gesamtgebäude</pre>		-	_	0,0	0,0
ungeregelte Wärmeeinträge im Januar					
Zone	Leuchte	Leuchtenabluft m³/hW		Q _I ,h kWh/d	Q _{I,w} kWh/d

<1> Gesamtgebäude

0,0

19,2

4,3

3,4

Prozesskennwerte "interne Wärme- und Kältequellen" in [kWh/m²a] <1> Gesamtgebäude: 37,7

AB = Bezugsfläche für die internen Wärmequellen / -senken

q_{I,D} = durchschnittliche, tägliche Wärmeabgabe von Personen

qLfac = durchschnittliche, tägliche Wärmeabgabe von Geräten und Maschinen

 $Q_{I,g} = Q_{I,goods} =$ täglicher Wärmeeintrag durch Stofftransporte

QI = Summe der internen Wärmequellen / -senken, Tageswert

Leuchtenabluft = Volumenstrom des Leuchten-Abluftsystems (0 = ohne Abluft)

Q_{1.1} = Wärmeeinträge durch künstliche Beleuchtung, berücksichtigt vorhandene Abluftsysteme

Q_{I,h} = ungeregelte Wärmeeinträge der Heizungsanlage, siehe Heizsysteme

Q_{I,w} = ungeregelte Wärmeeinträge der Warmwasserversorgung, siehe Warmwassersysteme

7.0 Ausnutzungsgrad für Wärmequellen (DIN V 18599-2)

Betrachtungsmonat Januar

Zone	Σ H $_{ m T}$ W/K	Σ H _V Σ W/K	H _{V,mech} W/K	Q _{sink} kWh/d	Q _{source} kWh/d	γ
<1> Gesamtgebäude	370	64	444	237	84	0,355
Zone	C _{wirk} Wh/m²K	H W/K	τ h	a -	η -	η_{WE}
<1> Gesamtgebäude	50	878	19,83	2,24	0,935	1,000

 Σ H_T = H_{T,D} + H_{T,iu} = Transmissionswärme-Transferkoeffizienten, H_{T,iz} siehe Q_{sink}

 Σ Hy = Lüftungswärme-Transferkoeffizienten aus Infiltration und Fensterlüftung

 Σ H_{V,mech} = Transferkoeffizient aus mechanischer Lüftung mit WRG ohne Kühlfunktion

Q_{Sink} = Summe der Wärmesenken aus Transmission und Lüftung in der Gebäudezone

Q_{Source} = Summe der solaren und internen Wärmequellen in der Gebäudezone

 γ = Q_{source} / Q_{sink} = Verhältnis zwischen Wärmequellen und Wärmesenken

C_{wirk} = wirksame Wärmespeicherfähigkeit, Standardwert 50 bis maximal 130 Wh/m²K bei schweren Bauweisen mit normalen Raumhöhen und ohne Innenverkleidungen, bezogen auf einen m² Grundfläche

 τ = Zeitkonstante = C_{wirk} / H mit H = Transferkoeffizient der Gebäudezone aus Transmission und Lüftung

 $a = a_0 + \tau / \tau_0 = 1 + \tau / 16 = numerischer Parameter$

η = Ausnutzungsgrad = (1 - γa) / (1 - γa+1), bei γ=1 ⇒ η = a / (1+a), DIN V 18599-2 Gl. 133, 134

Sonderfälle: wenn 1- $(\eta^*\gamma)$ < 0.01 \Rightarrow η = 1/ γ , wenn $(1-\eta)^*\gamma$ < 0.01 \Rightarrow η = 1,

bei hohen, mechanischen Grundluftwechseln $V_{mech} > Q_{C,max} / (0.34 * (\vartheta_i - \vartheta_{mech})) \Rightarrow \eta = 1$

 η_{WE} = Ausnutzungsgrad im Wochenendbetrieb

8.0 Heizwärmebedarf (DIN V 18599-2)

Außentemperaturen im Monatsmittel für den Standort "Deutschland"

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	
-1,3	0,6	4,1	9,5	12,9	15,7	18,0	18,3	14,4	9,1	4,7	1,3 °C	
31	28	31	30	31	30	31	31	30	31	30	31 Tage	

8.1 Zone <1> Gesamtgebäude

im Regelbetrieb: $\vartheta_{i,h,soll}$ = 21,0 °C, $\vartheta_{i,c,soll}$ = 24,0 °C, Q _I = 41,8 kWh/d, Nutzungsanteil 0,55 im Wochenendbetrieb: $\vartheta_{i,h,soll}$ = 21,0 °C, $\vartheta_{i,c,soll}$ = 24,0 °C, Q _I = 0,0 kWh/d, Nutzungsanteil 0,45

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Ti	°C	20,5	20,0	19,7	19,4	19,2	19,3	19,6	
${ t T_{ t i}},{ t WE}$	°C	19,7	18,6	17,7	17,1	17,0	17,0	17,6	
η_{source}		0,370	0,745	0,879	0,930	0,935	0,909	0,852	
η _{source,WE}		0,737	0,983	0,999	1,000	1,000	0,999	0,993	
t _h	h	201	744	720	744	744	672	744	5.236
$Q_{ m T}$	kWh	1.521	2.835	3.759	4.694	5.371	4.399	4.027	33.769
QV	kWh	45	529	818	1.115	1.321	1.041	879	5.835
Qs*	kWh	976	904	468	176	457	607	997	9.437
Q _I *	kWh	386	831	1.010	1.152	1.152	1.000	963	7.838
Q _h ,b	kWh	204	1.629	3.099	4.481	5.082	3.834	2.947	
		Apr	Mai	Jun	Jul	Aug			
		746	267	40	_	3			22.330

Prozesskennwert "Heizwärmebedarf": 64,1 kWh/m²a (A_{NGF} = 348 m²)

Raumtemperaturen T_i = ϑ_i im Regelbettrieb und $T_{i,WE}$ = $\vartheta_{i,WE}$ im Wochenendbetieb,

 $\eta_{source,WE} = \text{Ausnutzungsgrade für solare und interne Wärmegewinne im Regel-} / \text{WE-Betrieb monatliche Heizzeit } t_h \text{ nach Anhang D, Transmissionsverluste Q}_T \text{ und Lüftungsverluste Q}_V$

solare Wärmegewinne $Q_S^* = Q_S^* \eta$ und interne Wärmegewinne $Q_I^* = Q_I^* \eta$

Heizwärmebedarf Qh,b = QT + QV - QS* η - QI* η mit dem Ausnutzungsgrad η

8.2 Summe Heizwärmebedarf

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Qh,b,sum	kWh	204	1.629	3.099	4.481	5.082	3.834	2.947	
		Apr 746	Mai 267	Jun 40	Jul -	Aug 3			22.332

Prozesskennwert "Summe Heizwärmebedarf": 64,1 kWh/m²a (ANGF = 348 m²)

9.0 RLT-Systeme (DIN V 18599-3)

Betrachtungsmonat Januar, ϑ_e = -1,3 Υ

Zone	Feuchteanf. No	Anlage	Komponenten		ϑ _{ZUL} ,Jan °C
<1> Gesamtgebäude	mT 04	RLT-Anlage	VE WRG75		17,0
Luftförderung	$V_{\mbox{mech,m}}$ m³/h	t _V *d _V h/m	PV,ZUL kW	PV,ABL kW	QV,E,Jan kWh
<1> Gesamtgebäude	3482	153	0,66	0,66	202

RLT-Anlage <1> mit V_{mech} = 3482 m³/h, V^* = 3482 m³/h, zeit- / nutzungsabhängig, balanciert

Feuchteanforderung mT / oT = mit / ohne Toleranz (Nutzungsrandbedingung)

RLT-Anlagen nach DIN V 18599-3, Tabellen A.2 bis A.13 mit den Anlagenkomponenten

VE = Ventilator, LH = Luftheizer, LK = Luftkühler, LBv / LBd = Verdunstungsbefeuchter / Dampfbefeuchter

WRG..% = Anlage mit ..% Wärmerückgewinnung, WRG+ = Rückgewinnung Wärme + Feuchte

 ϑ_{ZUL} = mittlere Zulufttemperatur im Betrachtungsmonat nach Tab.3 oder Tab.4

 ϑ_{HC} = korrigierte, mittlere Zulufttemperatur (berücksichtigt unterschiedliche Ventilatorabwärme)

 $V_{mech,m}$ = Zuluft- / Abluft-Volmenstrom, Regelwert = Luftwechselzahl * Luftvolumen

ty*dy = monatliche Betriebsstunden der RLT-Anlage = h/Tag * Tage * Nutzungsanteil im Regelbetrieb

 $P_{V,ZUL} \, / \, P_{V,ABL} = elektrische \, Leistungsaufnahme \, [kW] \, der \, Zuluft- \, und \, Abluft-Ventilatoren \, P_{V,ABL} = elektrische \, Leistungsaufnahme \, [kW] \, der \, Zuluft- \, und \, Abluft-Ventilatoren \, P_{V,ABL} = elektrische \, Leistungsaufnahme \, [kW] \, der \, Zuluft- \, und \, Abluft-Ventilatoren \, P_{V,ABL} = elektrische \, Leistungsaufnahme \, [kW] \, der \, Zuluft- \, und \, Abluft-Ventilatoren \, P_{V,ABL} = elektrische \, Leistungsaufnahme \, [kW] \, der \, Zuluft- \, und \, Abluft-Ventilatoren \, P_{V,ABL} = elektrische \, P_{V,ABL}$

Q_{V.E} = Nutzenergiebedarf für die Luftförderung im Betrachtungsmonat

9.1 End- und Nutzenergie Zone <1> Gesamtgebäude

Endenergiebedarf für die Luftförderung $Q_{V,E}$ relative Komponentenlaufzeiten: Wärmerückgewinnung $t_{WRG,r} = 0,63$ (Tab. B1/B2)

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
V _{mech,m}	m³/h	3.482	3.482	3.482	3.482	3.482	3.482	3.482	
Q _{V,E}	kWh	196	202	196	202	202	183	202	
		196	202	196	202	202			2.383
ϑ _{ZUL}	°C	21,7	19,8	18,7	17,7	17,0	17,6	18,6	
$\vartheta_{ { m HC}}$	°C	23,1	21,2	20,1	19,1	18,4	19,0	20,0	

Prozesskennwert "Luftförderung": 6,8 kWh/m²a

10.0 Beleuchtungssysteme (DIN V 18599-4)

Tageslichtbereiche an vertikalen Fassaden (11), mit Dachoberlichtern (0) Bezüge siehe DIN V 18599-4

10.1 Tageslichtbereiche an vertikalen Fassaden

Der Verbauungsindex wird nach DIN V 18599, T4, Abs. 5.5.1 berechnet

Z	one	A _{TL} m²	A _{RB} m²	I _{Tr}	I _{Rt}	I^{Λ}	D _{Rb}
Nord	1	26,9	2,1	0,08	2,37	1,00	2,4
West	1	53,8	1,5	0,03	2,37	1,00	1,4
Süd	1	10,1	1,1	0,11	2,37	1,00	3,1
Nord	1	46,4	4,0	0,09	1,45	1,00	3,9
Süd	1	28,3	1,6	0,06	1,45	1,00	3,3
Ost	1	70,9	18,9	0,27	1,73	1,00	7,1
Ost	1	70,9	3,5	0,05	1,73	1,00	2,8
Nord	1	28,2	1,5	0,05	1,73	1,00	2,9
West	1	70,9	18,9	0,27	1,73	1,00	7,1
West	1	70,9	4,0	0,06	1,73	1,00	2,9
Süd	1	40,4	16,6	0,41	1,73	1,00	10,0
		E _m [lx]	τ _{D65} *k	c_{TL} , SNA	$c_{\mathrm{TL},\mathrm{SA}}$	t _{rel}	$\mathtt{C}_{\mathtt{TL}}$
Nord Nord	1	300	0,44	0,50	0,70	1,00	0,50
		300	0,44	0,36	0,70	0,80	0,43
	1	300	0,42	0,70	0,70	0,67	0,70
Nord Nord	1	300	0,44	0,69	0,70	1,00	0,69
	I Nord I West I Süd I Nord I Süd I Ost I Ost I Nord I West I Süd I Süd I Süd I Süd I Süd I Süd	West	Mord	Mord	m ² m ² 1 Nord	Mord	Nord

Projekt Feuerw_1Zone gedruckt am 17.02.2008, Seite 11

5	Α	0208	FAW	Süd	Süd	1	300	0,44	0,74	0,70	0,67	0,73
6	Α	0301	FAW	Ost	Ost	1	300	0,44	0,92	0,70	0,80	0,87
7	W	0301	FAW	Ost	Ost	1	300	0,44	0,61	0,70	0,80	0,63
8	Α	0302	FAW	Nord	Nord	1	300	0,44	0,57	0,70	1,00	0,57
9	Α	0303	FAW	West	West	1	300	0,44	0,92	0,70	0,80	0,87
10	W	0303	FAW	West	West	1	300	0,44	0,63	0,70	0,80	0,64
11	Α	0304	FAW	Süd	Süd	1	300	0,44	0,97	0,70	0,67	0,88

tageslichtversorgte Flächen nach Zonen

zone	A _{NGF} [m²]	A _{TL} [m²]	ANGF-ATL [m²]
<1> Gesamtgebäude	348	518	-170

<1> Gesamtgebäude

 A_{TL} = tageslichtversorgte Fläche = α_{TL} * b_{TL} , bei Dachoberlichtern manueller Ansatz mit α_{TL} = Tiefe des Tageslichtbereichs = 2.5 * (h_{St} - h_{Ne}), max. Raumtiefe, h_{St} = Sturzhöhe der

Rohbauöffnungen, hNe = Höhe der Nutzebene über dem Fußboden, und bTL = Breite des Tageslichtbereichs

A_{RB} = Fensterfläche (Rohbaumaße)

ITr = Transparenzindex = ARB / ATL

 I_{Rt} = Raumtiefenindex = α_{TL} / (h_{TL} - h_{Ne}) mit h_{TL} = Höhe des Tageslichtbereichs

I_V = Verbauungsindex mit Faktoren für lineare Verbauung, horizontale und vertikale Auskragungen (z.B. Balkone),

Innenhöfe / Atrien und Glasdoppelfassaden

 $D_{Rb} = Tageslichtquotient = (4.13 + 20 * I_{Tr} - 1.36 * I_{Rt}) * I_{V} (Gl.25)$

bei Dachoberlichtern D = D_a * τ_{D65} * k * A_{RB} / A_{TL} * η_R (Gl. 29), mit D_a = Außentageslichtquotient nach

Tab.13, η_R = Raumwirkungsgrad nach Tab.15 und Tab.16

E_m = Wartungswert der Beleuchtungsstärke

τ_{D65} = Lichttransmissionsgrad der Verglasung nach Tab.8 bzw. Tab.13 für lichtstreuende Dachverglasungen

 $k = k_1 * k_2 * k_3$ mit Faktoren für Rahmen, Sprossen und Verschmutzung der Verglasung

ctl.SNA = ctl.Vers.SNA = Tageslichtversorgungsfaktor bei nicht aktiviertem Sonnenschutz nach Gl.28

c_{TL},S_A = c_{TL},V_{ers},S_A = Tageslichtversorgungsfaktor bei aktiviertem Sonnenschutz nach Tab.12

 $t_{rel} = t_{rel,TL,SA} = telative Zeit mit aktiviertem Sonnen- / Blendschutz, orientierungsabhängig nach Tab.7$

cTL = Tageslichtversorgungsfaktor = cTL, Vers, SNA * (1 - trel, TL, SA) + cTL, Vers, SA * trel, TL, SA (Gl.26)

c_{TL} bei Dachoberlichtern nach Tab.18, abhängig von der Dachneigung und Flächenorientierung

Teilbetriebsfaktoren Tageslicht

Bereich	C_{TL}	$C_{\mathrm{TL,kon}}$	F_{TL}	Jan	Feb	Mrz	Apr	Mai	Jun
1 A 0108 FAW Nord	1 0,50	0,50	0,75	0,79	0,76	0,73	0,72	0,71	0,70
2 A 0109 FAW West	1 0,43	0,50	0,79	0,82	0,79	0,77	0,76	0,75	0,75
3 W 0110 FAW Süd	1 0,70	0,50	0,65	0,70	0,66	0,63	0,60	0,59	0,59
4 A 0202 FAW Nord	1 0,69	0,52	0,64	0,69	0,65	0,62	0,60	0,58	0,58
5 A 0208 FAW Süd	1 0,73	0,51	0,63	0,69	0,64	0,61	0,59	0,57	0,57
6 A 0301 FAW Ost	1 0,87	0,58	0,50	0,57	0,51	0,47	0,43	0,41	0,41
7 W 0301 FAW Ost	1 0,63	0,50	0,69	0,73	0,70	0,67	0,65	0,64	0,63
8 A 0302 FAW Nord	1 0,57	0,50	0,71	0,76	0,72	0,70	0,68	0,67	0,67
9 A 0303 FAW West	1 0,87	0,58	0,50	0,57	0,51	0,47	0,43	0,41	0,41
10 W 0303 FAW West	1 0,64	0,50	0,68	0,73	0,69	0,66	0,64	0,63	0,62
11 A 0304 FAW Süd	1 0,88	0,60	0,47	0,55	0,49	0,44	0,41	0,39	0,38

 $C_{TL,kon} = \text{Korrekturaktor zur Berücksichtigung des tageslichtabhängigen Kontrollsystems interpoliert nach Tab. 19} \\$

F_{TL} = Teilbetriebsfaktoren Kunstlicht im TL-Bereich nach Gl.30, Verteilungsschlüssel v_{Monat} nach Tab. 20 / 21

 $F_{TL} = 1 - v_{Monat} * C_{TL} * C_{TL,kon}$, falls $v_{Monat} * C_{TL} * C_{TL,kon} < 1$, sonst $F_{TL} = 0$

10.3 Kunstlichtversorgung

elektrische Anschlussleistung für Kunstlichtbereiche (11) Tabellenverfahren, monatlich berechnet

Bere	ich		Zone	Ftn	$\mathbf{E}_{\mathfrak{M}}$ lx	Pj,lx W/m²lx	k	Pj W/m²	Lampen
1 A 01	08 FAW	Nord	1	0,90	300	0,057	0,56	9,6	1-2-1
2 A 01	09 FAW	West	1	0,90	300	0,057	0,56	9,6	1-2-1
3 W 01	10 FAW	Süd	1	0,90	300	0,057	0,56	9,6	1-2-1
4 A 02	02 FAW	Nord	1	0,90	300	0,057	0,56	9,6	1-2-1
5 A 02	08 FAW	Süd	1	0,90	300	0,057	0,56	9,6	1-2-1
6 A 03	01 FAW	Ost	1	0,90	300	0,057	0,56	9,6	1-2-1
7 W 03	01 FAW	Ost	1	0,90	300	0,057	0,56	9,6	1-2-1
8 A 03	02 FAW	Nord	1	0,90	300	0,057	0,56	9,6	1-2-1
9 A 03	03 FAW	West	1	0,90	300	0,057	0,56	9,6	1-2-1
10 W 03	03 FAW	West	1	0,90	300	0,057	0,56	9,6	1-2-1
11 A 03	04 FAW	Süd	1	0,90	300	0,057	0,56	9,6	1-2-1

1-2-1: stabförmige Leuchtstofflampen, Vorschaltgerät VVG verlustarm, direkt

E	Bereicl	n		Zone	F _{Prä}	A _{TL} m²	FTL,Jan	tT,TL,Jan h/m	A _{KTL} m²	t _{T,KTL} h/a	t _N h/a
1 <i>P</i>	1 0108	FAW	Nord	1	0,92	27	0,79	84	0		2
2 <i>I</i>	A 0109	FAW	West	1	0,92	54	0,82	87	0		2
3 V	V 0110	FAW	Süd	1	0,92	10	0,70	75	0		2
4 <i>I</i>	0202	FAW	Nord	1	0,92	46	0,69	74	0		2
5 <i>I</i>	0208	FAW	Süd	1	0,92	28	0,69	73	0		2
6 <i>I</i>	0301	FAW	Ost	1	0,92	71	0,57	61	0		2
7 V	0301	FAW	Ost	1	0,92	71	0,73	78	0		2
8 <i>I</i>	0302	FAW	Nord	1	0,92	28	0,76	81	0		2
9 <i>I</i>	0303	FAW	West	1	0,92	71	0,57	61	0		2
10 V	0303	FAW	West	1	0,92	71	0,73	78	0		2
11 <i>I</i>	0304	FAW	Süd	1	0,92	40	0,55	59	0		2

10.4 Endenergiebedarf für Beleuchtung Ql,f

Zone	Sep kWh	Okt kWh	Nov kWh	Dez kWh	Jan kWh	Feb kWh	Mär kWh	Jahr kWh
<1> Gesamtgebä	292	310	334	361	327	305	289	3.586
	292	310	334	361	327	305	289	
	Apr	Mai	Jun	Jul	Aug			
	278	271	269	272	280			3.586

Prozesskennwerte "Beleuchtung" in [kWh/m²a]

<1> Gesamtgebäude: 10,3

TLB = Tageslichtbereich, Berechnungsbereiche mit Kunstlichtversorgung können Tageslichtbereiche enthalten $F_{t,n}$ = Teilbetriebsfaktor für Beleuchtung nach DIN V 18599-10

p_{i, IX} = spezifische, elektrische Bewertungsleistung in [W/m²lx], Tab.1

k = kA * kL * kR, Minderungs- und Anpassungsfaktoren für die Sehaufgabe, die Lampenart und die Raumart $p_j =$ elektrische Bewertungsleistung = $p_{j,lX} * E_m * kA * kL * kR$ W/m² (Gl.10)

 $F_{Pr\ddot{a}}$ = Teilbetriebsfaktor für Präsenz nach Gl.31, relative Abwesenheiten nach DIN V 18599-10 oder manuell A_{TL} / A_{KTL} = Flächen mit / ohne Tageslichtversorgung, A_{TL} + A_{KTL} = $A_{Bereich}$

 $t_{T,TL} = t_{eff,Tag,TL} = t_{Tag} * F_{TL} * F_{Pr\ddot{a}} = \text{Betriebszeit der Beleuchtung im Bereich mit Tageslicht zur Tagzeit} \\ t_{T,KTL} = t_{eff,Tag,KTL} = t_{Tag} * F_{Pr\ddot{a}} = \text{Betriebszeit der Beleuchtung im Bereich ohne Tageslicht zur Tagzeit} \\ t_{N} = t_{eff,Nacht} = t_{Nacht} * F_{Pr\ddot{a}} = \text{Betriebszeit der Beleuchtung zur Nachtzeit, } \\ t_{Nacht} / t_{Tag} \text{ siehe DIN V 18599-10} \\ Q_{I,b,n} = \text{Nutzenergiebedarf für Beleuchtung} = p_{j} * [A_{TL}*(t_{Tag,TL} + t_{Nacht}) + A_{KTL}*(t_{Tag,KTL} + t_{eff,Nacht})] (GI.2) \\ Q_{I,f} = \Sigma F_{t,n} * \Sigma Q_{I,b} = Q_{i,L,elektr} = \text{Endenergiebedarf für Beleuchtung nach Zonen (GI.1)} \\$

12.0 Warmwassersysteme (DIN V 18599-8)

12.1 Nutzenergiebedarf Warmwasser

Zone	Nutzung	q _w ,b kWh/d je	Menge	Qw,b,Jan kWh/m
<1> Gesamtgebäude	Schule mit Dusc	0,250 m ² NGF	348	1.478 c

 $Q_{w,b} = q_{w,b} * d_{mth} * d_{nutz}/365 * Menge [kWh/Monat] (DIN V 18599-10, Tab.6) c) Flächenbezug ist die Nettogrundfläche <math>A_{NGF}$

Prozesskennwert "Warmwasserwärmebedarf" in [kWh/m²a] <1> Gesamtgebäude: 4,2

12.2 Eingesetzte Warmwassersysteme

Anlage	Versorgungsbereich	Zone(n) m²	^Q w,b kWh/Jahr
1 zentrale WW-Versorgung	1/	348	17.400

12.3 Bereich "zentrale WW-Versorgung", Zonen <1> Gesamtgebäude

12.3.1 Verteilungsnetz, Zonen <1> Gesamtgebäude

Verteilsystem: mit Zirkulation, Zirkulationsbetrieb an z = 7,0 h/d Wärmedurchgangskoeffizient U_i , gedämmte Leitungen nach 1995 (sh. Tab.7) mittlere Temperatur des Rohrabschnitts $\vartheta_{w,m}$ ohne Zirkulation, im Zirkulationsbetrieb = $50 \, \text{C}$ Umgebungstemperaturen $\vartheta_{u,Sommer}$, 13 $\, \text{C}$ im unbeheizten, 22 $\, \text{C}$ im beheizten Bereich

Hilfsenergie der Zirkulationspumpe $Q_{w,d,aux} = P_{hydr} / 1000 * d_{Nutz,mth} * z * e_{w,d,aux}$ in [kWh/m] (Gl.14) hydraulische Leistung der Pumpe im Auslegungspunkt, $P_{hydr} = 0.2778 * \Delta p * V = 638$ [W] (Gl.17) Pumpen-Aufwandszahl $e_{w,d,aux} = (1,25 * (200 / P_{hydr})^{0.5}) * 1 * (0,50+0,63) = 0,791$ (Gl.22) Pumpen-Volumenstrom im Auslegungspunkt, $V = \Sigma U_i * I_i * (57,5 - \vartheta_{i,h,soll}) / (1,15 * \Delta \vartheta_z) = 0,13$ [m³/h] Differenzdruck im Auslegungspunkt, $\Delta p = 0,1*Lmax + \Delta p_{RV,TH} + \Delta p_{App} = 17,15$ [kPa] Zirkulationspumpe, geregelt, elektrische Leistungsaufnahme P_p = unbekannt, bedarfsorientiert

				Verteilun	g (V)	Sträng	ge (S)	Stichl	tg. (St)
Leitungsl	ängen l _i			29 m		24	m		11 m
Wärmedurc	hgangsko	effizien	t Ui	0,400 W	/mK	$0,400~\mathrm{W/mK}$		0,400 W/mK	
Warmwasse	rtempera	tur $\vartheta_{ extsf{w}, extsf{m}}$	l	28 °C	!	28 °C		28 °C	
Umgebungstemperatur $\vartheta_{ ext{u,w}}$			13 °C		20 °C		20 °C		
Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
$Q_{w,d,V}$	kWh	144	149	144	149	149	134	149	1.749
$Q_{w,d,S}$	kWh	88	91	88	91	91	82	91	1.026
$Q_{W,d,St}$	kWh	13	13	13	13	13	12	13	142
Q_{W} , d	kWh	244	253	244	253	253	227	253	2.918
Q _{I,w,d}	kWh	100	104	100	104	104	94	104	1.168
Qw,d,aux	kWh	60	60	60	60	60	60	60	720

Prozesskennwert "Warmwasserverteilung" 8,4 kWh/m²a, Hilfsenergie 2,1 kWh/m²a

 $Q_{W,d}$ = Wärmeverluste des Rohrnetzes der Warmwasserverteilung nach DIN V 18599-6, Abs. 6.2 Leitungslängen der Verteilung (V), der Stränge (S) und der Stichleitungen (St) nach Tab.6 oder manuell im Zirkulationsbetrieb werden Verteilung und Stränge mit doppelter Länge gerechnet (Abs.6.2.1.1) $Q_{I,W,d}$ = ungeregelte Wärmeeinträge durch die WW-Verteilung, siehe "interne Wärmegewinne" $Q_{W,d,aux}$ = Hilfsenergiebedarf der Zirkulationspumpe

12.3.2 Warmwasserspeicher, Zonen <1> Gesamtgebäude

indirekt beheizter Speicher nach 1994, Speichervolumen V = 180 Liter Bereitschafts-Wärmeverlust $q_{BS} = 1.9$ kWh/d (siehe Gl. 24-28) Umgebungstemperatur am Aufstellort Tu 13,0 °C (außer halb) Speicher-Wärmeverlust $Q_{w,s} = f_{Verbindung}$ * (50-Tu)/45 *d_{Nutz,mth} * q_{B,S} mit f = 1,2 (Gl.23) Speicherladepumpe mit P_p = 52,39 W, Hilfsenergiebedarf $Q_{w,s,aux}$ für $Q_{N,Kessel}$ = 24,0 kW

Erzeugernutzwärmeabgabe für Trinkwarmwasserbereitung $Q_{w,outg} = Q_{w,b} + Q_{w,d}$ monatlich

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Qw,outg	kWh	1.674	1.731	1.674	1.731	1.731	1.562	1.731	20.318
Qw,s	kWh	31	32	31	32	32	29	32	373
Q _{w,s,aux}	kWh	4	4	4	4	4	4	4	49

Prozesskennwert "Warmwasserspeicher" 1,1 kWh/m²a

12.3.4 Wärmepumpe zur Trinkwassererwärmung, Zonen <1> Gesamtgebäude

Wärmepumpe 1, marktüblich im Kombibetrieb Heizung / WW, 10 kW Typ 5, Elektro-Wärmepumpe Sole-Wasser, Baujahr 2008, maximale Laufzeit 10 h/d Leistungszahl (COP) 3.0 bei B0/W50, Quelltemperaturkorrektur nach DIN V 18599, T5, A.6 Quelltemperaturen für Jan-Dez [℃]: 1.3°1.6°2.1° 2.9°3.4°3.9°4.2°4.2°3.7°2.9°2.2°1.7°

Nutzwärmeabgabe für Trinkwarmwasserbereitung $Q_{w,outg} = Q_{w,b} + Q_{w,d} + Q_{w,s} - Q_{w,sol}$ monatlich $Q_{w,f} =$ Endenergiebedarf und $Q_{w,f,aux} =$ Hilfsendenergiebedarf der Wärmeerzeugung COP = Leistungszahl der WP, $t_{ON} =$ Laufzeit, $Q_{w,in} =$ verwendete Umweltwärme (GI.80)

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Q _w ,outg COP t _{ON} ,g,d	kWh h/d	1.705 3,24 10,4	1.762 3,18 10,4	1.705 3,14 10,4	1.762 3,11 10,4	1.762 3,08 10,4	1.591 3,10 10,4	1.762 3,13 10,4	20.691
$Q_{W,f}$ $Q_{W,in}$ $Q_{W,f,aux}$	kWh kWh kWh	526 1.179 -	554 1.208	543 1.162 -	567 1.196 -	572 1.190	513 1.078	563 1.199 -	6.504 14.187

Ein konventioneller Wärmeerzeuger ist nicht erforderlich

12.4 Endenergie Warmwasserbereitung

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Qw,outg	kWh	1.705	1.762	1.705	1.762	1.762	1.591	1.762	20.691
Qw,f	kWh	543	571	559	584	589	529	580	6.704
Qw,aux	kWh	64	64	64	64	64	64	64	
		64	64	64	64	64			769

Strom-Mix	kWh		554 543			572 533		563	6.504
QI,w,<1>	kWh/d	3,3	3,4	3,3	3,4	3,4	3,3	3,4	

Q_{w,outq} / Q_{w,f} = Nutz- / Endenergiebedarf für Warmwasserbereitung

 $Q_{W,aux}$ = Hilfsenergiebedarf, $Q_{I,W}$ = ungeregelte Wärmeeinträge durch Leitungs- / Speicherverluste

Ungeregelte Wärmeeinträge werden bei Bedarf flächengewichtet auf die Zonen aufgeteilt

13.0 Heizsysteme (DIN V 18599-5)

13.1 Maximal erforderliche Heizleistung Qh, max

nach T2, Anhang B, Bemessung	smonat = Januar mit	$\vartheta_{i,h,min}$ zonenb	ezogen und เ	_{e,min} = -12℃	
Zone	Q _{T,max} kW	Q _{V,max} kW	V _{mech} m³/h	QV,mech kW	Qh,max kW
<1> Gesamtgebäude	11,8	2,0	0	0,0	13,8

 $Q_{T,max}$ = Heizleistung zur Deckung der Transmissionswärmeverluste inklusive Wärmebrücken. Wärmetransfer zu benachbarten Zonen $Q_{T,iz}$ temperaturgewichtet mit $T_{i,min,H}$.

Q_{V,max} = Heizleistung zur Deckung der Lüftungswärmeverluste aus Infiltration und Fensterlüftung

V_{mech} = n_{mech,ZUL} * V = Mindestvolumenstrom der mechanischen Lüftungsanlage

 $Q_{V,mech} = 0.34 * V_{mech} * (\vartheta_{i,h,min} - \vartheta_{V}) = \text{Heizleistung für die Nacherwärmung der Zuluft (RLT mit WRG)}$

Qh.max = QT.max + QV.max + QV.mech = erforderliche Heizleistung in der Gebäudezone

13.2 Eingesetzte Heizungsanlagen

Sommerbetrieb: Heizung auch zur Deckung des reinen Wochenend-Wärmebedarfs

Anlage	Versorgungsbereich	Zone(n)	^Q h,b kWh/Jahr	Q _{h,max} kW	Q _{N,h} kw
1 Flächenheizung		1/	22.330	13,8	17,9

(1) Fußbodenheizung Warmwasser, Zweipunktregler Verlegeflächen mit doppelter Mindestdämmung nach EN 1264, intermittierender Heizbetrieb

Nutz-Heizwärmebedarf $Q_{h,b}$ nach T2, maximale Heizleistung $Q_{h,max}$ (T2, Anhang C) und Kesselnennleistung $Q_{N,h}$ nach T5, 5.3.

Prozesskennwert "Heizwärmebedarf" in [kWh/m²a] <1> Gesamtgebäude: 64,1

13.3 Bereich "Flächenheizung", Zonen <1> Gesamtgebäude

Heizzeiten und rechnerische Laufzeiten der Heizung, Leitzone "<1> Gesamtgebäude"

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
th <1>	h/m	201	744	720	744	744	672	744	5.236
th,rL,T <1:	> h/d	9	10	13	15	17	15	13	
d _{h,rB} <1>	d/m	5	17	16	17	17	15	17	119
th.rL <1>	h/m	41	163	207	253	284	236	221	1.538

Monatliche Heizzeiten $t_h = t_{h,Nutz} + t_{h,WE}$ in [h/m] nach DIN V 18599-2, D.2 auf Basis der mittleren Auslastung des Heizsystems, zonenbezogen.

Rechnerische Laufzeiten $t_{h,rL}$ der Heizungsanlage nach DIN V 18599-5, 5.4.1 = 24 - $f_{L,NA}$ * (24 - $t_{h,op}$) auf Basis der Nutzungsrandbedingungen $t_{h,op}$ (Betriebsstunden der Heizung / Tag), $d_{hutz,a}$ (Nutzungstage / Jahr), der monatlichen Heizzeiten t_h sowie den Festlegungen zur Nacht- und Wochenendabsenkung / -abschaltung. $d_{h,rB}$ = monatliche, rechnerische Betriebstage der Heizung (Gl.21)

13.3.1 Wärmeübergabe, Zonen <1> Gesamtgebäude

Fußbodenheizung Warmwasser, Zweipunktregler Verlegeflächen mit doppelter Mindestdämmung nach EN 1264, intermittierender Heizbetrieb

Gesamtnutzungsgrad $\eta_{h,ce}$ = 1 / (4 - (η_L + η_C + η_{B1} /2 + η_{B2} /2)) = 0,90 (GI.28, Tab.7)

Verluste der Wärmeübergabe $Q_{h,ce} = Q_{h,b} * (f_{Radiant} * f_{int} * f_{hydr} / \eta_{h,ce} -1)$ (Gl.27)

Geräte der Wärmeübertragungsprozesse:

Hilfsenergiebedarf $Q_{h,ce,aux} = P_C^* d_{mth}^* 24/1000 + (P_V + P_P + P_{h.aux})^* t_{h.r.L}/1000$ (Gl. 33/34)

Nutzwärmebedarf und Verluste der Wärmeübergabe

Monat				Nov	Dez	Jan	Feb	Mär	Jahr
Q _{h,b}	kWh	204	1.629	3.099	4.481	5.082	3.834	2.947	22.330
Qh,ce	kWh	18	145	275	398	452	341	262	1.985

Prozesskennwert "Heizwärmeübergabe" 5,7 kWh/m²a, Hilfsenergie 0,0 kWh/m²a

Nutz-Heizwärmebedarf Qh,b (nach T2), Regel- und WE-Betrieb

Gesamtnutzungsgrad der Wärmeübergabe $\eta_{h,Ce}$ = 1 / (4 - (η_L + η_C + η_B)) mit den Teilnutzungsgraden η_L für vertikales Lufttemperaturprofil, η_C für Raumtemperaturregelung und η_B für spezifische Verluste der Außenbauteile (Tab.6 bis Tab.11)

Verluste der Wärmeübergabe $Q_{h,Ce}$ mit den Faktoren $f_{Radiant}$ für Strahlungseinfluss (in Hallen mit Raumhöhen > 4 m) f_{int} für intermittierenden Heizbetrieb / raumweise Temperaturabsenkung und f_{hydr} für hydraulischen Abgleich (Regelwert = 1)

Hilfsenergiebedarf der Wärmeübergabe $Q_{h,ce,aux}$ mit den Parametern

 P_C = elektrische Nennleistungsaufnahme der Regelungseinrichtungen (Tab.12 oder Herstellerangabe)

Py / Pp = elektrische Nennleistungsaufnahme der Ventilatoren und Pumpen (Tab.13)

Ph.aux = Hilfsenergiebedarf von Erzeugern, Erhitzern und Ventilatoren bei direkter Beheizung (h_R > 4m, Tab.14)

13.3.2 Heizwärmeverteilung, Zonen <1> Gesamtgebäude

System: Zweirohrnetz mit innen liegenden Strängen

Leitungslängen nach Tab.15 mit $L_G = 15.2$ m = größte Länge und $B_G = 14.0$ m = größte Breite der Gebäudezone, Geschoßhöhe $h_G = 3.00$ m und Anzahl der Geschosse $n_G = 2$.

Leitungslängen der Verteilung (V), der Stränge (S) und der Anbindeleitungen (A) nach Abs. 6.2.

Vor- / Rücklauftemperatur (Auslegung) $\vartheta_{VA} = 35 \ \mbox{$^{\circ}$C} \ / \ \vartheta_{RA} = 28 \ \mbox{$^{\circ}$C}, \ T_{i,Soll,<1>} = 21,0 \ \mbox{$^{\circ}$C}.$

Wärmedurchgangszahlen Ui nach Tab.16, gedämmte Leitungen nach 1995

Q_{h,d,aux} = Hilfsenergiebedarf der Heizungspumpe nach Abs.6.2.1

Zweirohrnetz hydraulisch abgeglichen, $f_{Abgl} = 1,00, f_{Sch} = 1,00$

Differenzdruck im Auslegungspunkt (Pumpe) $\Delta p = 0.13 * L_{max} + 2 + \Delta p_{WE} + \Delta p_{FBH} = 31 kPa$

mit Differenzdruck des Wärmeerzeugers $\Delta p_{WE} = 1$ kPa, der Flächenheizung $\Delta p_{FBH} = 25$ kPa, $L_{max} = 20$ m

Pumpe: , Cp1 = , Cp2 = , P_{Pumpe} unbekannt

	Verteilung (V)	Stränge (S)	Anbindung (A)
Leitungslängen li	43 m	32 m	234 m

Wärmedurch	ıgangszal	nlen U _i	0,200 W/mK			0,255	W/mK	0,255 W/mK	
Umgebungst	emperati	uren $\vartheta_{ m u,i}$		13,0 °C	1	20,0	°C	20,0	0 °C
Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
ϑ _{VL,m}	°C	22	24	26	28	29	28	26	
$\vartheta_{ exttt{RL,m}}$	°C	22	22	24	25	25	24	23	
Qh,d,V	kWh	3	14	21	29	34	27	22	163
Qh,d,S	kWh	1	4	8	13	16	12	8	65
Qh,d,A	kWh	5	30	60	95	119	86	61	477
Q _{h,d}	kWh	9	49	90	138	169	124	91	705
Q _{I,h,d}	kWh	6	34	69	108	135	98	69	542
Qh,d,aux	kWh	-	-	-	-	_	-	-	-

Prozesskennwert "Heizwärmeverteilung" 2,0 kWh/m²a, Hilfsenergie 0,0 kWh/m²a

 $\label{eq:WLm} \textit{Mittlere Vorlauf-}, \ \textit{R\"{u}}\textit{cklauf-} \ \textit{und Heizkreistemperaturen} \ (\vartheta_{VL,m}, \vartheta_{RL,m}, \vartheta_{HK,m}) \ \textit{nach Abs. 5.2:}$

 $\vartheta_{VL,m}$ / $\vartheta_{VL,m}$ nach Gl. 12 / 13 mit n = 1.33 für Heizkörper, n = 1.1 für FB-Heizungen

 $\vartheta_{HK,m} = (\vartheta_{VL,m} - \vartheta_{RL,m}) \ / \ 2 \ \text{mit} \ \beta_{h,d} = \text{mittlere Belastung im Prozessbereich Wärmeverteilung (Gl.8)}$

 $Q_{h,d}$ = Wärmeverluste des Rohrnetzes = $\Sigma I_j * U_j (\vartheta_{HK,m} - \vartheta_{u,i}) * t_{h,rL,i}/1000 [kWh] (Gl.38)$

 $Q_{I,h,d} = Q_{h,d}$ = ungeregelte Wärmeeinträge in Zonen mit innen liegenden Leitungen

 $Q_{h,d,aux}$ = Hilfsenergiebedarf der Verteilung = $W_{h,d,hydr}$ * $e_{h,d,aux}$ (Gl.40)

 $W_{h,d,hydr}$ = hydraulischer Energiebedarf = $P_{hydr}/1000 * \beta_{h,d} * t_h * f_{Sch} * f_{Abgl}$ (Gl.41)

 P_{hvdr} = hydraulische Leistung der Pumpe = 0.2778 * Δp * V' = 14,63 (Gl.42)

 $e_{h,d,aux}$ = Pumpen-Aufwandszahl = f_e * (C_{p1} + $C_{p2}/\beta_{h,d}$) (Gl.46)

mit f_{Abal} / f_{Sch} = Korrekturfaktoren für hydraulischen Abgleich / hydraulische Schaltung

V´ = Pumpen-Volmenstrom im Auslegungspunkt = $Q_{h,max}$ / (1.15* $\Delta \vartheta_{HK}$) (Gl.43)

th / th.rl = moatliche Heizstunden und rechnerische Laufzeit der Heizung

C_{D1} / C_{D2} = Konstanten zur Pumpen-Afwandszahl nach Tab.17

 f_e = b * (1.25 + (200 / P_{hydr})0.5) oder f_e = P_{Pumpe} / P_{hydr} = Effizienzfaktor der Pumpe

 f_{PA} = Korrekturfaktor für Absenkung / Abschaltung der Pumpe bei intermittierendem Betrieb

13.3.5 Heizungswärmepumpe, Zonen <1> Gesamtgebäude

Wärmepumpe 1, marktüblich im Kombibetrieb Heizung / WW, 10 kW Typ 5, Elektro-Wärmepumpe Sole-Wasser, Baujahr 2008, maximale Laufzeit 10 h/d Leistungszahl (COP) 3.0 bei B0/W50, Quelltemperaturkorrektur nach DIN V 18599, T5, A.6 Quelltemperaturen für Jan-Dez [°C]: 1.3°1.6°2.1° 2.9°3.4°3.9°4.2°4.2°3.7°2.9°2.2°1.7° Korrektur der Leistungszahl für $\vartheta_{VL}=35,0$ °C und $\Delta\vartheta_{HK}=7,0$ °K (Inter- / Extrapolation) Korrekturen für den Teillastbetrieb (A.5.1), schwere Flächenheizung, 30 cm Rohrabstand Nachheizung infolge Laufzeitbegrenzung mit (2.) Wärmeerzeuger

Nutzwärmeabgabe für Heizung $Q_{h,outg} = Q_{h,b} + Q_{h,d} + Q_{h,s} - Q_{h,sol}$ monatlich Nutzwärmeabgabe und Laufzeit für die WW-Bereitung siehe "Warmwassersysteme" $Q_{h,f} = Endenergiebedarf$ und $Q_{h,f,aux} = Hilfsendenergiebedarf$ der Wärmeerzeugung COP = Leistungszahl der WP, $t_{ON} = Laufzeit$, $Q_{h,in} = verwendete Umweltwärme$ (GI.93)

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Q _{h,outg}	kWh	231	1.822	3.465	5.017	5.704	4.299	3.300	25.020
COP		4,26	, -	4,06	•	3,95	3,99	4,05	
ton,g,d	h/d	0,8	4,3	4,3	4,3	4,3	4,3	4,3	

Q _{h,f}	kWh	54	322	319	335	339	303	330	2.286
Qh,f,bu	kWh	-	484	2.170	3.679	4.366	3.090	1.962	15.749
$Q_{h,in}$	kWh	177	1.016	976	1.004	999	906	1.008	6.985
Qh.f.aux	kWh	_	-	_	_	_	_	_	_

13.3.6 Heizwärmeerzeugung, Zonen <1> Gesamtgebäude

Heizung mit einem Wärmeerzeuger

1. Brennwertkessel, verbessert ab 1999, $Q_N=12.0$ KW (Erdgas), $\beta_{K,pl}=0.3$ Umgebungstemperatur am Aufstellort $\vartheta_i=13$ °C, außerhalb der thermischen Hülle Tageslaufzeit zur TW-Erwärmung $t_{w,100,Jan}=0.00$ h/d Kesselwirkungsgrade $\eta_{k,100}=0.956$ bei Volllast, $\eta_{k,pl}=1.046$ bei Teillast Bereitschaftswärmeverlust $q_{B.70}=0.015$ kW, Strahlungsverlust $q_{St}=0.020$ kW

elektrische Leistungsaufnahme $P_{aux,100} = 0.148$ kW, $P_{aux,pl} = 0.049$ kW, $P_{aux,SB} = 0.015$ kW Verlustleistungen im Januar $Q_{V,q,100} = 0.81$ kW, $Q_{V,q,pl} = 0.21$ kW, $Q_{B,h} = 0.06$ kW (Gl. 109, 108, 104)

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Qh,outg	kWh	_	484	2.170	3.679	4.366	3.090	1.962	15.749
$\beta_{h,1}$		-	0,25	0,88	1,00	1,00	1,00	0,74	
Qh,g,v,1	kWh/d	-	1	5	8	8	8	4	
Qh,g	kWh		24	79	128	143	119	73	566
Qh,f	kWh	_	508	2.249	3.806	4.509	3.209	2.035	16.315
Qh,g,aux	kWh	-	15	35	45	49	42	32	230

Prozesskennwert "Endenergie Heizwärme" 46,9 kWh/m²a (= Nutzwärmebedarf * 0,73)

QN = Kesselnennleistung, Planungsgröße

 $\beta_{K,pl}$ = Heizkesselbelastung im Prüfstand, Lastbereich Teillast

 $\eta_{k,100}$ / $\eta_{k,pl}$ = Kesselwirkungsgrade bei Vollalst / Teillast nach Herstellerangaben oder Gl.119 ff

 $\eta_{k,100,Betrieb}$ / $\eta_{k,pl,Betrieb}$ = Kesselwirkungsgrade bei Betriebstemperatur nach Gl.106 ff, monatlich

q_{B.70} / q_{St} = Bereitschaftsverluste nach Herstellerangabe oder Gl.122 ff

 $P_{aux,100} \, / \, P_{aux,pl} \, / \, P_{aux,SB} \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, Herstellerangabe \, oder \, Gl.124 \, ff \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, March \, (Volllast, \, Teillast, \, Stillstand) \, nach \, (Volllast, \, Teillast, \, Teillast, \, Stillstand) \, nach \, (Volllast, \, Teillast, \,$

 $Q_{V,g,100}$ = Verlustleistung bei Volllast = ($f_{Hs/Hi} - \eta_{k,100,Betrieb}$) / $\eta_{k,100,Betrieb} * Q_{N}$

 $Q_{V,g,pl}$ = Verlustleistung bei Teillast = $(f_{Hs/Hi} - \eta_{k,pl,Betrieb}) / \eta_{k,pl,Betrieb} * \beta_{K,pl} * Q_{N}$

 $Q_{B,h}$ = Kessel-Verlustleistung im Stillstand = $q_{B,70}$ * ($\vartheta_{HK,m}$ - ϑ_{i}))/50 * Q_{N} / $\eta_{K,100}$ * $f_{Hs/Hi}$

f Hs/Hi = Brennwert / Heizwertkorrektur nach DIN V 18599-1, Tab.B.1

 $Q_{h,outg} = Q_{h,b} + Q_{h,ce} + Q_{h,d} + Q_{h,S} - Q_{h,sol} - Q_{rv,h,outg} = Nutzwärmebedarf$

 $\beta_{h,i} = Q_{d,in} / Q_N = \text{Belastungsgrad der Heizkessel, monatlich, Gl.96 / Gl.97 mit } Q_{d,in} = \Sigma Q_{h,outg} / \text{Betriebszeit}$

 $Q_{h,g,v,i} = ((\beta_{h,i} \ / \ \beta_{K,pl}) \ * \ (Q_{V,g,pl} \ - \ Q_{B,h}) \ + \ Q_{B,h}) \ * \ (t_{h,rL,T} \ - \ t_{w,100}) = Erzeugungsverluste, \ GI.100, \ \beta_{h,i} \le \beta_{K,pl}) \ + \ Q_{B,h} \ + \$

 $Q_{h,g,V,i} = ((\beta_{h,i} - \beta_{K,pl}) / (1 - \beta_{K,pl}) * (Q_{V,g,100} - Q_{V,g,pl}) + Q_{V,g,pl}) * (t_{h,rL,T} - t_{w,100}), Gl.101, \beta_{h,i} > \beta_{K,pl}) * (t_{h,rL,T} - t_{w,100}) * (t_{h,rL,T} - t_{w,100}), Gl.101, \beta_{h,i} > \beta_{K,pl}) * (t_{h,rL,T} - t_{w,100}) * (t_{h,rL,T} - t_{w,100}), Gl.101, \beta_{h,i} > \beta_{K,pl}) * (t_{h,rL,T} - t_{w,r,t}) * (t_{h,rL,T} -$

 $Q_{h,g} = \Sigma Q_{h,g,v,i} * d_{h,rB} = Gesamtverlust der Heizwärmeerzeugung [kWh/m], Gl.99$

Q_{I,h,q} = ungeregelt Wärmeeinträge durch Wärmeerzeuger in der thermischen Hülle, Gl.112

Qh,q,aux = Hilfsenergiebedarf nach Gl.114 ff

13.4 Endenergie Heizwärme

Monat		Sep	Okt	Nov	Dez	Jan	Feb	Mär	Jahr
Qh,f	kWh	_	508	2.249	3.806	4.509	3.209	2.035	16.315
Q _{h,aux}	kWh	-	15	35	45	50	42	32	

	• • •	-	-	11	_	-			230
Strom-Mix	kWh	54	322	319	335	339	303	330	
		202	71	10	_	1			2.286
Erdgas	kWh	_	508	2.249	3.806	4.509	3.209	2.035	
		-	-	-	-	-			16.315
Q _I ,h,<1>	kWh/d	0,2	1,1	2,3	3,5	4,3	3,5	2,2	

 $Q_{h,f} = \text{Endenergiebedarf Heizung} = Q_{h,b} + Q_{h,ce} + Q_{h,d} + Q_{h,s} + Q_{h,g} - Q_{h,sol} \text{ (GI.4)}$

 $Q_{h,aux} = \text{Hilfsenergiebedarf} = Q_{h,ce,aux} + Q_{h,d,aux} + Q_{h,s,aux} + Q_{h,g,aux} + Q_{h,sol,aux} \text{ (Gl.5)}$

 $Q_{l,h}$ = ungeregelte Wärmeeinträge = $Q_{l,h,d}$ + $Q_{l,h,s}$ + $Q_{l,h,g}$ (Gl.6)

Die Energieanteile nach Energieträgern werden bei Bedarf nach anteiliger Kesselbelastung aufgeteilt

Ungeregelte Wärmeeinträge werden bei Bedarf flächengewichtet auf die Zonen aufgeteilt

14.0 Energiebedarf (DIN V 18599-1)

14.1 Primärenergiebedarf nach Energieträgern

Eine BHKW-Anlage ist nicht vorgesehen

Energieträge:	r Prozessbereich	Zonen	Endenergie kWh/a	$f_{\mathtt{P}}$	$f_{ t Hs/ t Hi}$	Q _P kWh/a
Strom-Mix Erdgas Strom-Mix Strom-Mix Strom-Mix	Heizwärme Heizwärme Warmwasser Luftförderung Beleuchtung	Erdgas	2.286 16.315 6.504 2.383 3.586	2,70 1,10 2,70 2,70 2,70	1,11 1,00 1,00	6.172 16.168 17.561 6.435 9.682
Strom-Mix	Hilfsenergie		999	2,70	1,00	2.696
		Σ [kWh/Jahr]	32.073			58.714

 Q_P = $\Sigma~\mathsf{Q}_\mathsf{f,i}$ * $f_\mathsf{P,i}$ / $f_\mathsf{Hs/Hi,i}$ (DIN V 18599-1, Gl.23)

Jahres-Primärenergiebedarf $q_P = 168,7 \text{ kWh/m}^2 \text{a} (\Sigma A_{NGF} = 348 \text{ m}^2)$

Endenergiebedarf: Hilfsenergie 2,9 kWh/m²a, Strom-Mix 42,4 kWh/m²a, Erdgas 46,9 kWh/m²a

Endenergie = Jahressummen aus den Prozessbereichen

fp = Primärenergiefaktoren energieträgerbezogen nach DIN V 18599-1, Tab.A.1

14.2 Endenergiebedarf nach Zonen

siehe Abschnitt	RLT	Beleucht.	Klima 11	Warmwasser	Heizung	Strom- anteil	Summe
Zone Zone	kWh/m²a	= 0		kWh/m²a		ancerr %	kWh/m²a
<1> Gesamtgebäude	6,8	10,3	0,0	21,5	54,3	49,5	92,9
Gebäude	6,8	10,3	0,0	21,5	54,3		92,9

Endenergie = Jahressummen aus den Prozessbereichen inklusive Hilfsenergie

Die Aufteilung der Endenergieanteile aus Prozessbereichen mit mehreren Zonen wurde grundflächenbezogen vorgenommen.

15.0 EnEV-Nachweise

15.1 Nachweis HT'

Grenzwert für das EnEV-Referenzgebäude mit Fensterflächenanteil 15,7 %, $\vartheta_i \ge$ 19 °C , A = 971 m², V $_e$ = 1.346 Grenzwert zul H $_T'$ = 0.30 + 0.15 / (A/V $_e$) = 0,51 W/m²K (EnEV 2007, Anlage 2, Tab.2) vorh H $_T'$ = 0,38 \le 0,51 W/m²K, **Grenzwert wird eingehalten**

15.2 Nachweis QP

Grenzwert für das EnEV-Referenzgebäude $q_{P,Ref}$ = 234,3 kWh/m²a $q_{P,Ref}$ aus der Berechnung zum Referenzgebäude "GebäudeFeuerw_1Zone-Referenz" vorh q_P = 168,7 \leq 234,3 kWh/m²a, **Grenzwert wird eingehalten**

17.0 Längen, Flächen, Volumen

Flächenberechnung (Flächen.REB)

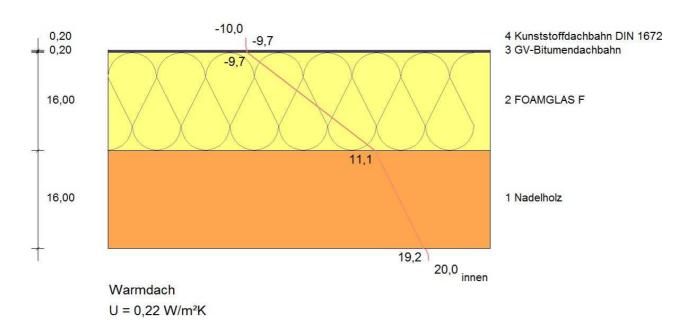
```
EG: =
Deckflächen: =
 1 F 0111 FD: 5,165*6,48 = 33,47
40 F 0112 FD: (2,0+1,585+2,55)*1,585 = 9,72
Außenwände: =
 2 F 0101 FAW Ost : 6,48*3,00 = 19,44
 3 F 0102 FAW Nord: 0,89*3,00 = 2,67
 4 F 0103 FAW Ost: 1,59*3,00 - [T 0103] = 2,62
 5 F 0106 FAW Nord : 1,58*3,00 - [T 0106] = 2,59
 6 F 0107 FAW Ost : 5,16*3,00 - [T 0107] = 13,33
 7 F 0108 FAW Nord: 8,98*3,00 - [A 0108] = 24,87
 8 F 0109 FAW West : 15,23*3,00 - [A 0109] = 44,21
9 F 0110 FAW Süd : 13,98*3,00 - [T 0110] - [W 0110] = 36,86
Öffnungen / Fenster: =
10 A 0108 FF Nord : 0,74*1,4*2 = 2,07
11 A 0109 FF West : 0,74*0,5*4 = 1,48
12 W 0110 FF Süd: 0,875*0,65*2 = 1,14
13 T 0103 FAW Ost , Tür: 1,01*2,13 = 2,15
14 T 0106 FAW Nord, Tür: 1,01*2,13 = 2,15
15 T 0107 FAW Ost , Tür: 1,01*2,13 = 2,15
16 T 0110 FAW Süd, Tür: 0,875*2,25*2 = 3,94
Grundflächen: =
17 F 0100 FG: 178,85 = 178,85
Garage: =
Deckflächen: =
18 F 0209 FD: 67,99 = 67,99
Außenwände: =
19 F 0201 FAW Ost : 6,55*4,20 - [T 0201] = 14,38
20 F 0202 FAW Nord: 10,30*4,20 - [A 0202] = 39,30
21 F 0203 FAW West : 4,25*4,20 = 17,85
22 F 0205 FAW West : 2,40*(4,20-3,0) = 2,88
23 F 0206 FAW Süd : 2,92*(4,2-3,0) = 3,50
24 F 0208 FAW Süd: 7,48*4,20 - [A 0208] = 29,84
Öffnungen / Fenster: =
25 A 0202 FF Nord : 0,89*0,89*5 = 3,96
26 A 0208 FF Süd: 0,89*0,89*2 = 1,58
27 T 0201 FAW Ost , Tür: 3,75*3,5 = 13,13
Grundflächen: =
28 F 0200 FG: 67,99 = 67,99
OG: =
Deckflächen: =
29 F 0305 FD : 141,48 = 141,48
Außenwände: =
30 F 0301 FAW Ost: 15,76*3,70 - [A 0301] - [W 0301] = 35,87
31 F 0302 FAW Nord : 8,98*3,70 - [A 0302] = 31,68
32 F 0303 FAW West: 15,76*3,70 - [A 0303] - [W 0303] = 35,37
33 F 0304 FAW Süd: 8,98*3,70 - [A 0304] = 16,68
Öffnungen / Fenster: =
```

```
Projekt Feuerw_1Zone
gedruckt am 17.02.2008, Seite 21
34 A 0301 FF Ost: 1,10*2,15*8 = 18,92
35 A 0302 FF Nord : 0,88*0,88*2 = 1,55
36 A 0303 FF West: 1,1*2,15*8 = 18,92
37 A 0304 FF Süd : 1,10*2,15*7 = 16,55
38 W 0301 FF Ost : 1,10*3,2 = 3,52
39 W 0303 FF West: 1,1*3,2+3,1415*0,4*0,4 = 4,02
Grundflächen: =
[Grundflächen]: =
[AGf 1] 0100 FG <1>: [F 0100] = 178,85
[AGf 2] 0200 FG <1>: [F 0200] = 67,99
[Bodenplattenmaß A] (nur Grundflächenprojektion): [AGF 1] + [AGF 2] = 246,84
[Grundflächenumfang]: =
[UGf 1] 0100 FG <1>: 6,48+0,89+1,59+2,52+2,00+1,58+5,16+8,98+15,23+13,98 = 58,41
[UGf 2] 0200 FG <1>: 6,55+10,30+4,25+2,40+2,92+7,48 = 33,90
[Bodenplattenmaß P] (nur Grundflächenprojektion): [UGF 1] + [UGF 2] = 92,31
[Bodenplattenmaß B]: 2 * [Bodenplattenmaß A] / [Bodenplattenmaß P] = 5,35
[Umbaute Räume]: =
[Vol 1] EG <1>: 3,00*178,85 = 536,55
[Vol 2] Garage <1>: 4,20*67,99 = 285,56
[Vol 3] OG <1>: 3,70*141,48 = 523,48
[Gebäudevolumen] Ve: [Vol 1] + [Vol 2] + [Vol 3] = 1345,59
[0.32 * Ve] AN: 0.32 * [Gebäudevolumen] = 430,59
.für Berechnungen nach DIN V 18599 nach Gebäudezonen: =
[Nettogrundflächen]: =
[dW01] Bauteildicke "AW": 0,41 = 0,41
[dW02] Bauteildicke "AUáENWAND_GARAGEAW_G": 0,36 = 0,36
[dW03] Bauteildicke "HOLZTAFELBAU, SPERRHOLZ": 0,12 = 0,12
[GfAbzug 1] 0100 FG <1>: [dW01]*6,48 +[dW01]*0,89 +[dW01]*1,59 +0 +0 +[dW01]*1,58 +[dW01]*5,16 +[dW01]*8,98
+[dW01]*15,23 + [dW01]*13,98 = 22,09
[GfAbzug 2] 0200 FG <1>: [dW02]*6,55 +[dW02]*10,30 +[dW02]*4,25 +0 +[dW02]*2,40 +[dW02]*2,92 +0 +[dW02]*7,48
= 12.20
[GfAbzug 3] OG <1>: [dW03]*15,76+[dW03]*8,98+[dW03]*15,76+[dW03]*8,98 = 5,94
[NGf 1] 0100 FG <1>: [AGf 1] - [GfAbzug 1] = 156,76
[NGf 2] 0200 FG <1>: [AGf 2] - [GfAbzug 2] = 55,79
[NGf 3] OG <1>: 141,48 - [GfAbzug 3] = 135,54
[NGf Summe]: [NGF 1] + [NGF 2] + [NGF 3] = 348,09
.Nettonutzflächen ANGF: =
[Nettonutzflächen]: =
[ANGf 1] Zone <1> EG: + [NGF 1] + [NGF 2] + [NGF 3] = 348,09
```

.Bruttoraumvolumen Ve, Außenmaße: =

.zur Kontrolle, alternativ: Vi = Ve * 0.8: = .Vi <1> EG: [Ve 1] * 0.8 = 1076,47

[Ve 1] EG: + [Vol 1] + [Vol 2] + [Vol 3] = 1345,59 .Nettoraumvolumen Vi = NGF * Raumhöhe: =


[Vi 1] Zone <1> EG: + [NGF 1]*2,70 + [NGF 2]*3,90 + [NGF 3]*3,40 = 1101,67

[Bruttoraumvolumen]: =

[Nettoraumvolumen]: =

Bauteilquerschnitt

Projekt Feuerw_1Zone Bauteil: Warmdach

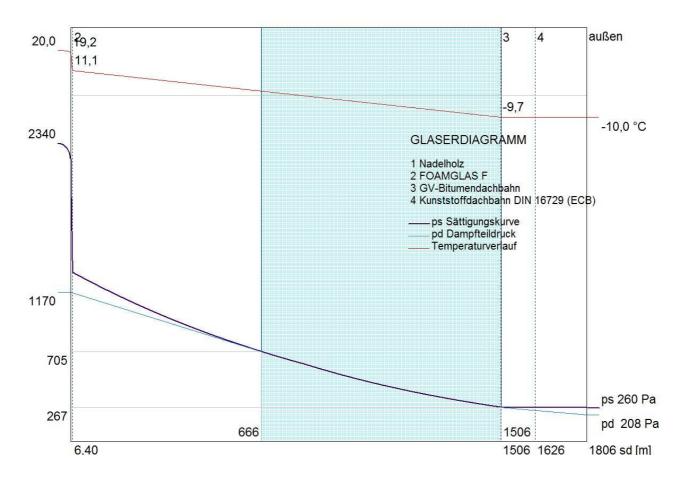
Bauteiltyp "Dachdecke" mit den Wärmeübergangswiderständen $R_{si} = 0.13$ und $R_{se} = 0.04$ m²K/W

.....

Querschnitt

von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,13
01 Nadelholz	16,000	600	96,0	0,130	1,23
02 FOAMGLAS F	16,000	165	26,4	0,050	3,20
03 GV-Bitumendachbahn	0,200	1500	3,0	0,170	0,01
04 Kunststoffdachbahn DIN 16729 (EC	0,200	1500	3,0	_	-
R _{se}					0,04
d =	32,400	G =	128,4	R _T	= 4,61

Wärmedurchgangskoeffizient U = **0,22 W/m²K** (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Wohngebäuden (EnEV)

Ersatz oder erstmaliger Einbau des Flachdachs

U
$$0,22 \le 0,25$$
 OK

Temperaturverlauf und Diffusionsberechnung

Projekt Feuerw_1Zone Bauteil: Warmdach

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	'	80 %
1440 Stunden	Innenklima	20,0 °C		50 %
Verdunstungsperiode	Außenklima	12,0 °C	'	70 %
2160 Stunden	Innenklima	12,0 °C		70 %
Temperatur der Dachobe	erfläche	20,0 °C		

Grenzschichttemperaturen und Sättigungsdampfdrücke

von innen	Taupe	riode	Verdunstungsperiode		
vor der Schichtgrenze	Tgr [°C]	p _S [Pa]	T _{gr} [°C]	p _s [Pa]	
Raumluft	20,0	2340	12,0	1403	
1 Nadelholz	19,2	2227	12,2	1422	
2 FOAMGLAS F	11,1	1321	14,4	1642	
3 GV-Bitumendachbahn	-9,7	267	20,0	2340	
4 Kunststoffdachbahn DIN 16729	-9,7	267	20,0	2340	
	-9,7	267	20,0	2340	

.....

Außenluft -10,0 260 12,0 1403

Diffusionswiderstände

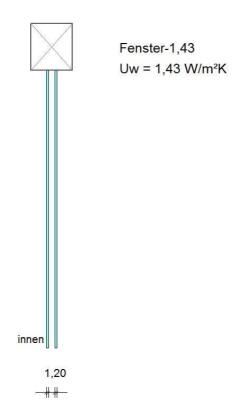
Schicht	$\mu_{ t min}$	μ _{max} [-]		$\mu_{ exttt{max}}$ *s	sd [m]
1 Nadelholz 2 FOAMGLAS F	40	40	6,40 1500,00	6,40 1500,00	6,40 1500,00
	-	-	•		•
3 GV-Bitumendachbahn	20000	60000	40,00	120,00	<- 120,00
4 Kunststoffdachbahn DIN 16729	70000	90000	140,00	180,00	<- 180,00
				Σ μ*s	= 1806,40

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = &~0.29 < 4.44 ~m^2\text{K/W} = R_{vorh}, \text{in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand} ~R_{min} = &~R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit } R_{si} / R_{se} = &~0.25 / ~0.04 ~m^2\text{K/W} ~und } \theta_i / ~\theta_e = ~20 / ~5 ~C ~nach DIN 4108-2 ~Abs.6.2 \end{split}$$

Tauwasserbildung im Inneren von Bauteilen (A.2)


Taubereich "FOAMGLAS F - GV-Bitumendachbahn"

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T} < zul\ m_{W,T}$ und $\ m_{W,V} > m_{W,T}$

Mindest- s_d -Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion: $s_{d.erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 300,00 * (1170 - 208) / (267 - 208) - 666,40 - 300,00 = 3925,1 m$

Bauteilquerschnitt

Projekt Feuerw_1Zone Bauteil: Fenster-1,43

Querschnittstabelle nur zur Gestaltung. k-Wert aus "Fensterflächen".

Bauteiltyp "Fenster" mit den Wärmeübergangswiderständen $1/\alpha_i=0,13$ und $1/\alpha_a=0,04$ m²K/W

Verglasung + Rahmen

CLIMAPLUS N KR, 4/12/4, Kryptonfüllung, Ug 1,1, g 60%, Rw 32dB Weichholzrahmen 80mm (EN ISO 10077-1 D.2), $\rm U_f$ 1.65

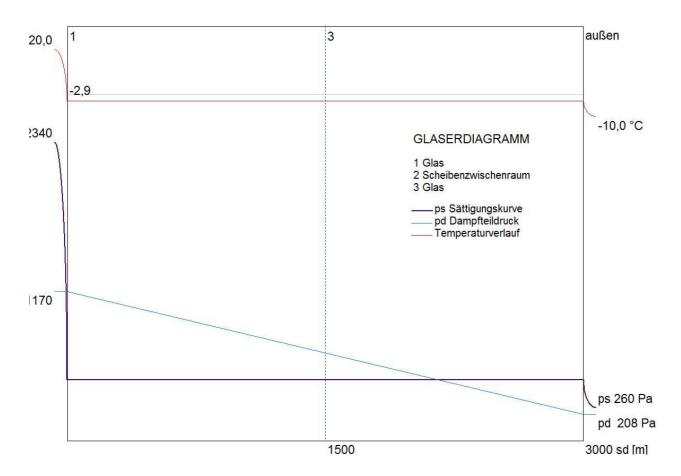
Fenster DIN 4108-4:1998 Tab.2

 $U_g = 1,10$ $U_f = 1,65$ \Rightarrow $U_w = 1,30 \text{ W/m}^2\text{K}$ g = 60 %

Wärmedurchgangskoeffizient nach EN ISO 10077-1:2000

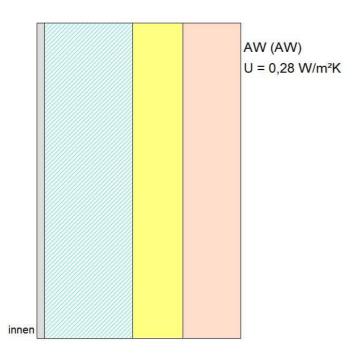
Einfachfenster, Tabellenwert $U_W = 1,43 (1,4) \text{ W/m}^2\text{K}$

U-Wert des Fensters mit Zweischeiben-Isolierverglasung und 30% Rahmenanteil nach Tab. F.1 mit U_g = 1,10 und U_f = 1,65 W/m²K


 $U_W = 1,43 \text{ W/m}^2\text{K}$ wird für die weiteren Berechnungen angenommen

Projekt Feuerw_1Zone gedruckt am 17.02.2008, Seite 26

 $k\text{-Wert} = - W/m^2K$


Temperaturverlauf und Diffusionsberechnung

Projekt Feuerw_1Zone Bauteil: Fenster-1,43

Bauteilquerschnitt

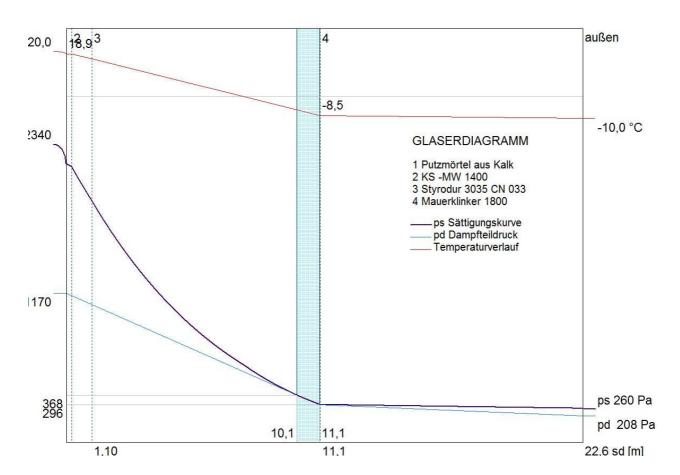
Projekt Feuerw_1Zone Bauteil: AW AW

Bauteiltyp "Außenwand" mit den Wärmeübergangswiderständen $R_{si} = 0,13$ und $R_{se} = 0,04$ m²K/W

Querschnitt

von innen		s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}						0,13
01 Putzmörtel aus Kalk		1,500	1800	27,0	0,870	0,02
02 KS -MW 1400		17,500	1400	245,0	0,700	0,25
03 Styrodur 3035 CN 033		10,000	33	3,3	0,033	3,03
04 Mauerklinker 1800		11,500	1800	207,0	0,810	0,14
R _{se}						0,04
	d =	40,500	G =	482,3	R _T	= 3,61

Wärmedurchgangskoeffizient U = **0,28 W/m²K** (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Wohngebäuden (EnEV)

Ersatz oder erstmaliger Einbau der Außenwand

U 0,28 ≤ 0,45 **OK**

Temperaturverlauf und Diffusionsberechnung

Projekt Feuerw_1Zone Bauteil: AW AW

Klimabedingungen Normklima DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

Grenzschichttemperaturen und Sättigungsdampfdrücke

von innen	Taupe			
vor der Schichtgrenze	Tgr [°C]	p _s [Pa]	Pd [Pa]	
Raumluft	20,0	2340	1170	
1 Putzmörtel aus Kalk	18,9	2185	1170	
2 KS -MW 1400	18,8	2172	1152	
3 Styrodur 3035 CN 033	16,7	1901	1083	
4 Mauerklinker 1800	-8,5	296	296	
	-9,7	267	208	
Außenluft	-10,0	260	208	

Diffusionswiderstände

Schicht	μ _{min} [-]	μ _{max} [-]	µ _{min} *s [m]	$\mu_{ exttt{max}}$ *s		sd [m]
1 Putzmörtel aus Kalk	15	35	0,22	0,53	->	0,22
2 KS -MW 1400	5	10	0,88	1,75	->	0,88
3 Styrodur 3035 CN 033	100	200	10,00	20,00	->	10,00
4 Mauerklinker 1800	50	100	5,75	11,50	<-	11,50
					-	
				Σu*s	: =	22.60

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = &~0,29 < 3,44 \text{ m}^2\text{K/W} = R_{vorh}, \text{in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand } R_{min} = &~R_{si} * ((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit } R_{si} / R_{se} = &~0.25 / ~0.04 \text{ m}^2\text{K/W} \text{ und } \theta_i / \theta_e = ~20 / -5 °C \text{ nach DIN 4108-2 Abs.6.2} \end{split}$$

Ergänzende Informationen

Die Taupunkttemperatur der Raumluft (20,0°C 50%) be trägt $\theta_s = 9.3$ °C (DIN 4108-3, Tab A.2) Die Oberflächentemperatur bei $\theta_e = -15$ °C ist $\theta_{0i,-15}$ °C = θ_i - R_{si} / R_T * (θ_i - θ_e) = 18,7 °C

Überträgt man das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken ($f_{Rsi} \ge 0.7$) mit genormten Randbedingungen nach DIN 4108-2 auf den eindimensionalen Fall, dann erhält man: mit R_{si} / R_{se} = 0.25 / 0.04 und R_{T} = 3,73 m²K/W $\Rightarrow f_{Rsi,1D}$ = 0,93 \ge 0.7

 \Rightarrow Das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken wird eingehalten. Mit θ_i / θ_e = 20 / -5 $^{\circ}$ C und ϕ_i = 50% erhält man vorh. θ_{si} = 18,3 $^{\circ}$ C und zul. $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C (mit θ_i / θ_e = +20,0 / -10,0 $^{\circ}$ C und ϕ_i = 50% wird vorh. θ_{si} = 18,0 $^{\circ}$ C und $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C)

Tauwasserbildung im Inneren von Bauteilen (A.2)


Taubereich "Styrodur 3035 CN 033 - Mauerklinker 1800"

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T}$ < zul $m_{W,T}$ und $m_{W,V}$ > $m_{W,T}$

Mindest- s_d -Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion: $s_{d,erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 11,50 * (1170 - 208) / (296 - 208) - 10,10 - 11,50 = 104,1 m$

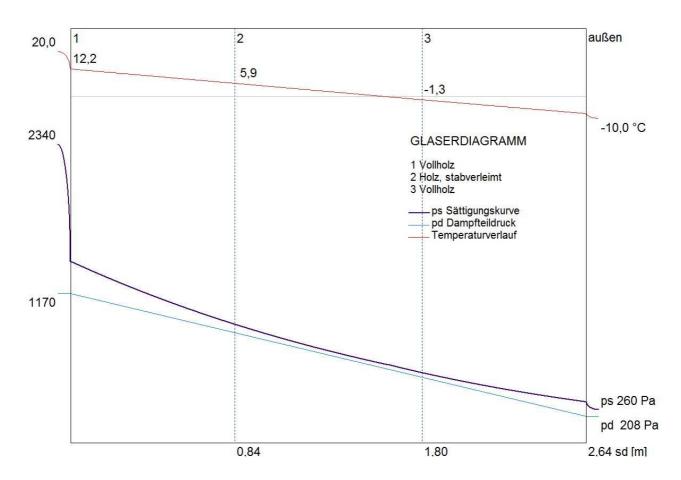
Bauteilquerschnitt

Projekt Feuerw_1Zone Bauteil: Aussentür,Holz1

Aussentür,Holz1 U = 2,00 W/m²K von innen

1 Vollholz 2 Holz, stabverleimt 3 Vollholz

Bauteiltyp "Außentür" mit den Wärmeübergangswiderständen $R_{si} = 0,13$ und $R_{se} = 0,04$ m²K/W


Querschnitt

von innen		s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}						0,13
01 Vollholz		2,100	800	16,8	0,200	0,10
02 Holz, stabverleimt		2,400	800	19,2	0,200	0,12
03 Vollholz		2,100	800	16,8	0,200	0,10
R _{se}						0,04
	d =	6,600	G =	52,8	R _T	= 0,50

Wärmedurchgangskoeffizient U = 2,00 W/m²K (ohne Korrekturen)

Temperaturverlauf und Diffusionsberechnung

Projekt Feuerw_1Zone Bauteil: Aussentür,Holz1

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

Grenzschichttemperaturen und Sättigungsdampfdrücke

von innen	Taupe			
vor der Schichtgrenze	Tgr [°C]	p _S [Pa]	pd [Pa]	
Raumluft	20,0	2340	1170	
1 Vollholz	12,2	1422	1170	
2 Holz, stabverleimt	5,9	925	864	
3 Vollholz	-1,3	547	514	
	-7,6	321	208	
Außenluft	-10,0	260	208	

Diffusionswiderstände

Schicht	μ _{min} [-]	$\mu_{ exttt{max}}$ [-]	μ _{min} *s [m]	µ _{max} *s [m]	sd [m]
1 Vollholz	40	40	0,84	0,84	0,84
2 Holz, stabverleimt	40	40	0,96	0,96	0,96
3 Vollholz	40	40	0,84	0,84	0,84
				$\Sigma \mu *s =$	2,64

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

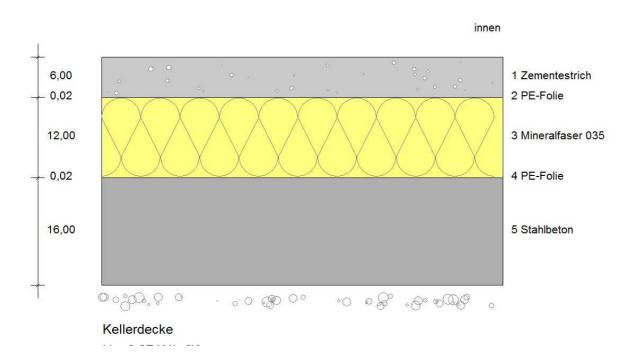
Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = ~0.29 < 0.33~m^2\text{K/W} &= R_{vorh}\text{, in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand}~R_{min} = R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit}~R_{si} / R_{se} = 0.25 / 0.04~m^2\text{K/W}~und}~\theta_i / \theta_e = 20 / -5~^{\circ}\text{C}~nach~DIN 4108-2~Abs.6.2} \end{split}$$

Ergänzende Informationen

Die Taupunkttemperatur der Raumluft (20,0°C 50%) be trägt $\theta_s = 9.3$ °C (DIN 4108-3, Tab A.2) Die Oberflächentemperatur bei $\theta_e = -15$ °C ist $\theta_{0i,-15}$ °C = θ_i - R_{si} / R_T * (θ_i - θ_e) = 10,9 °C

Überträgt man das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken ($f_{Rsi} \ge 0.7$) mit genormten Randbedingungen nach DIN 4108-2 auf den eindimensionalen Fall, dann erhält man: mit R_{si} / R_{se} = 0.25 / 0.04 und R_{T} = 0,62 m²K/W $\Rightarrow f_{Rsi,1D}$ = 0,60 < 0.7


 \Rightarrow Das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken wird <u>nicht</u> eingehalten.] Mit θ_i / θ_e = 20 / -5 $^{\circ}$ C und ϕ_i = 50% erhält man vorh. θ_{si} = 9,9 $^{\circ}$ C und zul. $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C (mit θ_i / θ_e = +20,0 / -10,0 $^{\circ}$ C und ϕ_i = 50% wird vorh. θ_{si} = 7,9 $^{\circ}$ C und $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C)

Tauwasserbildung im Inneren von Bauteilen (A.2)

Keine Tauwasserbildung im Bauteil. Diffusionsstromdichte = 0,243 g/m²h

Bauteilquerschnitt

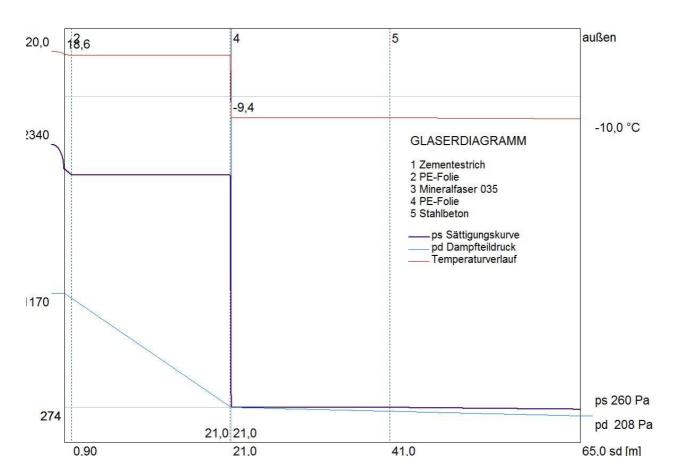
Projekt Feuerw_1Zone Bauteil: Kellerdecke

Bauteiltyp "Fußboden gegen Erdreich" mit den Wärmeübergangswiderständen $R_{si} = 0,17$ und $R_{se} = 0,00$ m²K/W

Querschnitt

von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,17
01 Zementestrich	6,000	2000	120,0	1,400	0,04
02 PE-Folie	0,020	1000	0,2	-	-
03 Mineralfaser 035	12,000	30	3,6	0,035	3,43
04 PE-Folie	0,020	1000	0,2	-	-
05 Stahlbeton	16,000	2400	384,0	2,100	0,08
R _{se}					0,00
	d = 34,040	G =	508,0	R _T	= 3,72

Wärmedurchgangskoeffizient $U = 0,27 \text{ W/m}^2\text{K}$ (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Gebäuden (EnEV)

Ersatz oder erstmaliger Einbau der Decke gegen Erdreich

$$U 0,27 \le 0,50 OK$$

Temperaturverlauf und Diffusionsberechnung

Projekt Feuerw_1Zone Bauteil: Kellerdecke

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

Grenzschichttemperaturen und Sättigungsdampfdrücke

	von innen	Taupe	Tauperiode		
	vor der Schichtgrenze	Tgr [°C]	p _s [Pa]	pd [Pa]	
	Raumluft	20,0	2340	1170	
1	Zementestrich	18,6	2145	1170	
2	PE-Folie	18,3	2105	1132	
3	Mineralfaser 035	18,3	2105	279	
4	PE-Folie	-9,4	274	274	
5	Stahlbeton	-9,4	274	244	
		-10,0	260	208	
	Außenluft	-10,0	260	208	

Diffusionswiderstände

Schicht	μ _{min} [-]	μ _{max} [-]	$\mu_{ exttt{min}}$ *s	$\mu_{ exttt{max}}$ *s		sd [m]
1 Zementestrich	15	35	0,90	2,10	->	0,90
2 PE-Folie	100000	100000	20,00	20,00		20,00
3 Mineralfaser 035	1	1	0,12	0,12		0,12
4 PE-Folie	100000	100000	20,00	20,00		20,00
5 Stahlbeton	70	150	11,20	24,00	<-	24,00
					-	
				Σ 11*s	=	65 02

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} &= 0.29 < 3.55 \text{ m}^2\text{K/W} = R_{vorh}, \text{ in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"armedurchlasswiderstand } R_{min} &= R_{si} * ((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit } R_{si} / R_{se} &= 0.25 / 0.04 \text{ m}^2\text{K/W und } \theta_i / \theta_e &= 20 / -5 \text{ $^{\circ}$C nach DIN 4108-2 Abs.6.2} \end{split}$$

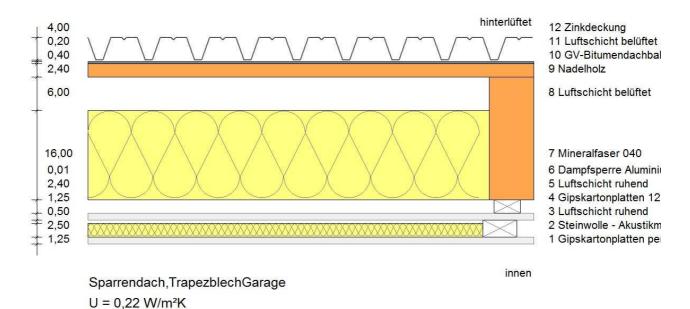
Ergänzende Informationen

Die Taupunkttemperatur der Raumluft (20,0°C 50%) be trägt θ_s = 9,3 °C (DIN 4108-3, Tab A.2) Die Oberflächentemperatur bei θ_e = -15°C ist $\theta_{0i,-15°C}$ = θ_i - R_{si} / R_T * (θ_i - θ_e) = 18,4 °C

Überträgt man das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken ($f_{Rsi} \ge 0.7$) mit genormten Randbedingungen nach DIN 4108-2 auf den eindimensionalen Fall, dann erhält man: mit R_{si} / R_{se} = 0.25 / 0.04 und R_{T} = 3,84 m²K/W $\Rightarrow f_{Rsi,1D}$ = 0,93 \ge 0.7

 \Rightarrow Das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken wird eingehalten. Mit θ_i / θ_e = 20 / -5 $^{\circ}$ C und ϕ_i = 50% erhält man vorh. θ_{si} = 18,4 $^{\circ}$ C und zul. $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C (mit θ_i / θ_e = +20,0 / -10,0 $^{\circ}$ C und ϕ_i = 50% wird vorh. θ_{si} = 18,0 $^{\circ}$ C und $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C)

Tauwasserbildung im Inneren von Bauteilen (A.2)


Tauebene vor Schicht "PE-Folie"

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T}$ < zul $m_{W,T}$ und $m_{W,V}$ > $m_{W,T}$

Mindest- s_d -Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion: $s_{d,erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 44,00 * (1170 - 208) / (274 - 208) - 21,02 - 44,00 = 576,3 m$

Projekt Feuerw_1Zone

Bauteil: Sparrendach, Trapezblech Garage

Bauteiltyp "Dachdecke hinterlüftet" mit den Wärmeübergangswiderständen $R_{si} = 0,10$ und $R_{se} = 0,10$ m²K/W

Querschnitt

von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,10
01 Gipskartonplatten perf.	1,250	900	11,3	0,210	0,06
02 Steinwolle - Akustikmatte	2,500	30	0,8	0,040	0,63
03 Luftschicht ruhend	0,500	1	0,0	-	0,11
04 Gipskartonplatten 12,5 mm	1,250	900	11,3	0,210	0,06
05 Luftschicht ruhend	2,400	1	0,0	-	0,16
06 Dampfsperre Aluminium-Ver	0,014	_	0,2	-	0,00
07 Mineralfaser 040	16,000	20	3,2	0,040	4,00
08 Luftschicht belüftet	6,000	1	0,1	-	0,00
09 Nadelholz	2,400	600	14,4	0,130	0,18
10 GV-Bitumendachbahn	0,400	1200	4,8	0,170	0,02
11 Luftschicht belüftet	0,200	1	0,0	-	0,00
12 Zinkdeckung	4,000	_	10,0	-	-
R _{se}					0,10
	d = 36,914	G =	55,9	R _T	= 5,43

 $U_{Gefach} = 0.18 \text{ W/m}^2\text{K}$

Rahmenbereich

Rahmenbreite	Achsabstand
Ranillenbrerte	ACHSabstand

zusammengesetztes Bauteil

	8,0 cm 80,0 cm	m 10,0	%	68	3,7 kg/m²		
	Rahmenanteil von innen		s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
	R _{si}						0,10
01	Gipskartonplatten perf.		1,250	900	11,3	0,210	0,06
02	Grundlattung		3,000	_	_	_	0,00
03	Gipskartonplatten 12,5 m	mm	1,250	900	11,3	0,210	0,06
04	Grundlattung		2,400	_	_	_	0,00
05	Dampfsperre Aluminium-V	er	0,014	_	0,2	-	0,00
06	Nadelholz		22,000	600	132,0	0,130	1,69
07	Nadelholz		2,400	600	14,4	0,130	0,18
08	GV-Bitumendachbahn		0,400	1200	4,8	0,170	0,02
09	Luftschicht belüftet		0,200	1	0,0	-	0,00
10	Zinkdeckung		4,000	_	10,0	_	0,00
	R _{se}						0,10
_			36,914		183,9	R _T	= 2,22

 $U_{(R)} = 0.45 \text{ W/m}^2\text{K}$

Weitere Bauteilschicht mit Rahmenanteilen

Bauteilschicht	Rahmenmaterial	λ	b	Ach	sabstand
02 Steinwolle - Akustikmatte	Nadelholz	0,13 W/mK	4,5	cm	83,5 cm

 $U_{m} = 85,1\% * 0,184 + 9,5\% * 0,450 + 4,9\% * 0,200 + 0,5\% * 0,558 = 0,21 \text{ W/m}^{2}\text{K}$

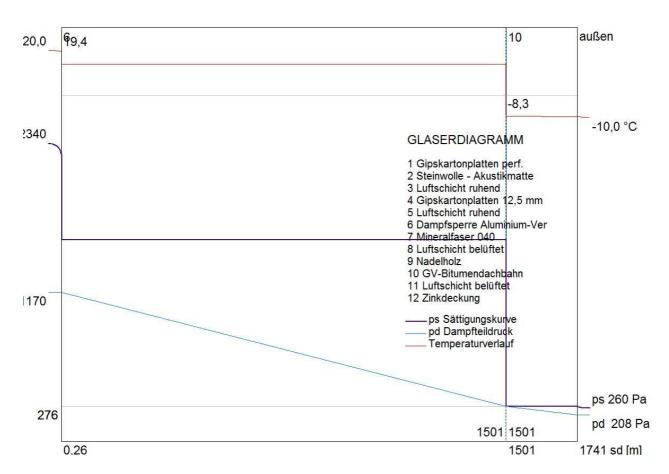
 $R'_{T} = 1 / U_{m} = 4,71 \text{ m}^{2}\text{K/W}$

 $R^{\prime\prime}_{T} = 0,10+0,06+0,56+0,00+0,06+0,01+0,00+3,27+0,00+0,18+0,02+0,00+0,00+0,10 = 4,37 \text{ m}^2\text{K/W}$

 $R_{min} = 0.001 \text{ m}^2\text{K/W}$ angenommen: Gefach-12

 $R_T = (R'_T + R''_T)/2 = 4,54 \text{ m}^2\text{K/W}$

Wärmedurchgangskoeffizient U = **0,22 W/m²K** (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Gebäuden (EnEV)

Ersatz oder erstmaliger Einbau des Flachdachs

U 0,22 \leq 0,25 **OK**

Projekt Feuerw_1Zone

Bauteil: Sparrendach, Trapezblech Garage

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

	von innen	Tauperiode			
	vor der Schichtgrenze	Tgr [°C]	p _s [Pa]	pd [Pa]	
	Raumluft	20,0	2340	1170	
1	Gipskartonplatten perf.	19,4	2254	1170	
2	Steinwolle - Akustikmatte	19,1	2212	1170	
3	Luftschicht ruhend	15,7	1784	1170	
4	Gipskartonplatten 12,5 mm	15,1	1717	1170	
5	Luftschicht ruhend	14,7	1674	1170	
6	Dampfsperre Aluminium-Ver	13,8	1578	1170	
7	Mineralfaser 040	13,8	1578	277	

8	Luftschicht belüftet	-8,3	301	277
9	Nadelholz	-8,3	301	277
10	GV-Bitumendachbahn	-9,3	276	276
11	Luftschicht belüftet	-9,4	274	208
12	Zinkdeckung	-9,4	274	208
		-9,4	274	208
	Außenluft	-10,0	260	208

	Schicht	μ _{min} [-]	μ _{max} [-]	μ _{min} *s [m]	μ _{max} *s [m]	sd [m]
1	Gipskartonplatten perf.	8	8	0,10	0,10	0,10
2	Steinwolle - Akustikmatte	1	1	0,03	0,03	0,03
3	Luftschicht ruhend	1	1	0,01	0,01	0,01
4	Gipskartonplatten 12,5 mm	8	8	0,10	0,10	0,10
5	Luftschicht ruhend	1	1	0,02	0,02	0,02
6	Dampfsperre Aluminium-Ver	_	-	1500,00	1500,00	1500,00
7	Mineralfaser 040	1	1	0,16	0,16	0,16
8	Luftschicht belüftet	1	1	0,06	0,06	0,06
9	Nadelholz	40	40	0,96	0,96	0,96
10	GV-Bitumendachbahn	20000	60000	80,00	240,00	<- 240,00
11	Luftschicht belüftet	1	1	0,00	0,00	0,00
12	Zinkdeckung	-	-	-	-	_

 $\Sigma \mu *s = 1741,44$

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = &~0.29 < 5.23~m^2\text{K/W}~= R_{vorh}, \text{in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand}~R_{min} = &~R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit } R_{si} / R_{se} = &~0.25 / ~0.04~m^2\text{K/W}~und}~\theta_i / ~\theta_e = ~20 / ~5~\%~nach DIN 4108-2~Abs.6.2 \end{split}$$

Ergänzende Informationen

Die Taupunkttemperatur der Raumluft (20,0°C 50%) be trägt $\theta_{\text{S}} = 9,3$ °C (DIN 4108-3, Tab A.2) Die Oberflächentemperatur bei $\theta_{\text{e}} = -15$ °C ist $\theta_{\text{oi,-15}}$ °C = θ_{i} - R_{si} / R_{T} * (θ_{i} - θ_{e}) = 19,4 °C

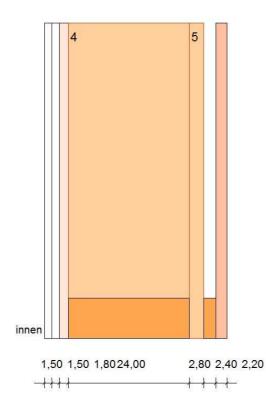
Überträgt man das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken ($f_{Rsi} \ge 0.7$) mit genormten Randbedingungen nach DIN 4108-2 auf den eindimensionalen Fall, dann erhält man: mit R_{si} / R_{se} = 0.25 / 0.04 und R_{T} = 5,52 m²K/W $\Rightarrow f_{Rsi,1D}$ = 0,95 \ge 0.7

 \Rightarrow Das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken wird eingehalten. Mit θ_i / θ_e = 20 / -5 $^{\circ}$ C und ϕ_i = 50% erhält man vorh. θ_{si} = 18,9 $^{\circ}$ C und zul. $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C (mit θ_i / θ_e = +20,0 / -10,0 $^{\circ}$ C und ϕ_i = 50% wird vorh. θ_{si} = 18,6 $^{\circ}$ C und $\theta_{si,80\%}$ = 12,6 $^{\circ}$ C)

Tauwasserbildung im Inneren von Bauteilen (A.2)

Tauebene vor Schicht "GV-Bitumendachbahn"

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da


Projekt Feuerw_1Zone gedruckt am 17.02.2008, Seite 41

 $m_{W,T} < zul \ m_{W,T} \ und \ m_{W,V} > m_{W,T}$

 $\label{eq:mindest-sd-Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion: \\ s_{d,erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 240,00 * (1170 - 208) / (276 - 208) - 1501,44 - 240,00 = 1653,9 \ m$

Projekt Feuerw_1Zone

Bauteil: Aussenwand_GarageAW AW_G

Aussenwand_GarageAW (AW) $U = 0.16 \text{ W/m}^2\text{K}$

von innen

- 1 FERMACELL 15 mm
- 2 FERMACELL 15 mm
- 3 Kronoply F, 18mm 4 isofloc® L Zellulose
- 5 GUTEX Multiplex-top 28 Unterdeckplatte
- 6 Luftschicht schwach belüf.
- 7 Holzschalung 22 mm

Bauteiltyp "Außenwand" mit den Wärmeübergangswiderständen $R_{si} = 0.13$ und $R_{se} = 0.04$ m²K/W

Querschnitt

von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,13
01 FERMACELL 15 mm	1,500	1150	17,3	0,320	0,05
02 FERMACELL 15 mm	1,500	1150	17,3	0,320	0,05
03 Kronoply F, 18mm	1,800	600	10,8	0,130	0,14
04 isofloc® L - Zellulose	24,000	60	14,4	0,040	6,00
05 GUTEX Multiplex-top 28 Unterdeck	2,800	200	5,6	0,047	0,60
06 Luftschicht schwach belüf.	2,400	1	0,0	-	0,09
07 Holzschalung 22 mm	2,200	600	13,2	0,130	0,17
R _{se}					0,04
d =	36,200	G =	78,5	R _T	= 7,26

 $U_{Gefach} = 0.14 \text{ W/m}^2\text{K}$

Rahmenbereich

8,0 cm 63,0 cm 12,7	%	96	,8 kg/m²		
Rahmenanteil von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,13
)1 FERMACELL 15 mm	1,500	1150	17,3	0,320	0,05
02 FERMACELL 15 mm	1,500	1150	17,3	0,320	0,05
3 Kronoply F, 18mm	1,800	600	10,8	0,130	0,14
04 Nadelholz	24,000	600	144,0	0,130	1,85
05 GUTEX Multiplex-top 28 Unterdeck	2,800	200	5,6	0,047	0,60
06 Nadelholz	2,400	600	14,4	0,130	0,18
07 Holzschalung 22 mm	2,200	600	13,2	0,130	0,17
R _{se}					0,04
	36,200		222,5	R _T	= 3,20

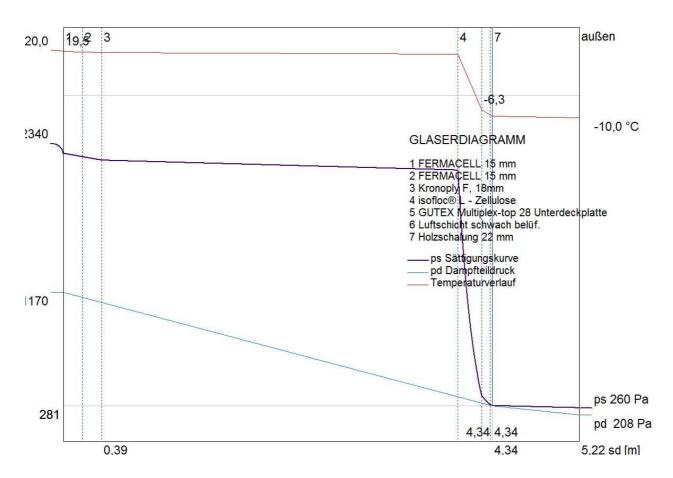
 $U_{(R)} = 0.31 \text{ W/m}^2\text{K}$

 $R'_{T} = 1 / (87,30\% * 1/7,257 + 12,70\% * 1/3,198) = 6,25 \text{ m}^{2}\text{K/W}$

 $R''_T = 0,13+0,05+0,05+0,14+4,67+0,60+0,10+0,17+0,04 = 5,93 \text{ m}^2\text{K/W}$

 $R_T = (R'_T + R''_T)/2 = 6,09 \text{ m}^2\text{K/W}$

Wärmedurchgangskoeffizient U = **0,16 W/m²K** (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Wohngebäuden (EnEV)

Ersatz oder erstmaliger Einbau der Außenwand

U $0,16 \le 0,45$ **OK**

Projekt Feuerw_1Zone

Bauteil: Aussenwand_GarageAW AW_G

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

von innen	Tauperiode			
vor der Schichtgrenze	Tgr [°C]	p _S [Pa]	pd [Pa]	
Raumluft	20,0	2340	1170	
1 FERMACELL 15 mm	19,5	2268	1170	
2 FERMACELL 15 mm	19,3	2241	1130	
3 Kronoply F, 18mm	19,1	2212	1090	
4 isofloc® L - Zellulose	18,5	2132	352	
5 GUTEX Multiplex-top 28 Unter	-6,3	359	303	
6 Luftschicht schwach belüf.	-8,8	288	286	
7 Holzschalung 22 mm	-9,1	281	281	
	-9,8	264	208	
Außenluft	-10,0	260	208	

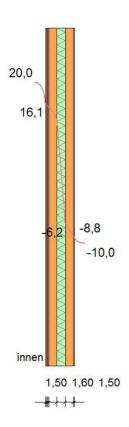
Schicht	$\mu_{ exttt{min}}$ [-]	μ _{max} [-]	μ _{min} *s [m]	$\mu_{ exttt{max}}^{ exttt{*s}}$ [m]		sd [m]
1 FERMACELL 15 mm	13	13	0,20	0,20		0,20
2 FERMACELL 15 mm	13	13	0,20	0,20		0,20
3 Kronoply F, 18mm	200	300	3,60	5,40	->	3,60
4 isofloc® L - Zellulose	1	2	0,24	0,48	->	0,24
5 GUTEX Multiplex-top 28 Unterd	3	3	0,08	0,08		0,08
6 Luftschicht schwach belüf.	1	1	0,02	0,02		0,02
7 Holzschalung 22 mm	40	40	0,88	0,88		0,88
					_	
				Σ u*s	=	5,22

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = &~0.29 < 7.09~m^2\text{K/W}~= R_{vorh}, \text{in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand}~R_{min} = &~R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit}~R_{si} / R_{se} = &~0.25 / ~0.04~m^2\text{K/W}~und}~\theta_i / ~\theta_e = ~20 / ~5~\%~nach DIN 4108-2~Abs.6.2 \end{split}$$

Tauwasserbildung im Inneren von Bauteilen (A.2)


Tauebene vor Schicht "Holzschalung 22 mm"

"Holzschalung 22 mm" in der Tauzone. Die Feuchtezunahme beträgt 0,9 Masse %. Erfüllt die Anforderungen nach DIN 4108-3, 4.2.1.

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T} <$ zul $m_{W,T}$ und $\ m_{W,V} > m_{W,T}$

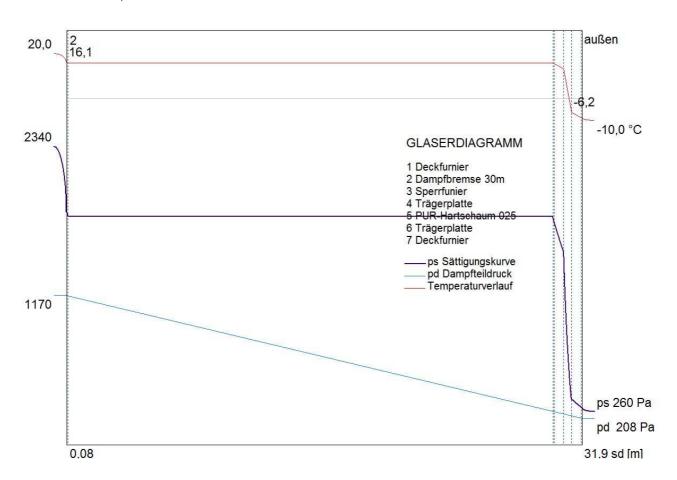
Mindest- s_d -Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion: $s_{d,erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 0.88 * (1170 - 208) / (281 - 208) - 4.34 - 0.88 = 6.4 m$

Projekt Feuerw_1Zone Bauteil: Aussentür,PU-Kern

Aussentür,PU-Kern U = 1,01 W/m²K

von innen

- 1 Deckfurnier
- 2 Dampfbremse 30m
- 3 Sperrfunier
- 4 Trägerplatte
- 5 PUR-Hartschaum 025
- 6 Trägerplatte
- 7 Deckfurnier


Bauteiltyp "Außentür" mit den Wärmeübergangswiderständen $R_{si} = 0,13$ und $R_{se} = 0,04$ m²K/W

Querschnitt

von innen		s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}						0,13
01 Deckfurnier		0,200	800	1,6	0,200	0,01
02 Dampfbremse 30m		0,030	_	-	-	-
03 Sperrfunier		0,200	800	1,6	0,200	0,01
04 Trägerplatte		1,500	800	12,0	0,200	0,07
05 PUR-Hartschaum 025		1,600	30	0,5	0,025	0,64
06 Trägerplatte		1,500	800	12,0	0,200	0,07
07 Deckfurnier		0,200	800	1,6	0,200	0,01
R _{se}						0,04
	d =	5,230	G =	29,3	R _T	= 0,99

Wärmedurchgangskoeffizient U = 1,01 W/m²K (ohne Korrekturen)

Projekt Feuerw_1Zone Bauteil: Aussentür,PU-Kern

Klimabedingungen Normklimadaten DIN 4108

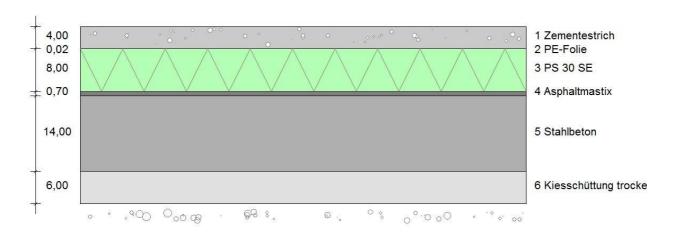
Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

von innen	Tauperiode			
vor der Schichtgrenze	Tgr [°C]	p _s [Pa]	pd [Pa]	
Raumluft	20,0	2340	1170	
1 Deckfurnier	16,1	1830	1170	
2 Dampfbremse 30m	15,8	1795	1168	
3 Sperrfunier	15,8	1795	263	
4 Trägerplatte	15,5	1762	261	
5 PUR-Hartschaum 025	13,2	1518	243	
6 Trägerplatte	-6,2	362	228	
7 Deckfurnier	-8,5	296	210	

	-8,8	288	208
Außenluft	-10,0	260	208

Schicht	$\mu_{ exttt{min}}$	μ _{max} [-]	μ _{min} *s [m]	μ _{max} *s [m]		sd [m]
1 Deckfurnier	40	40	0,08	0,08		0,08
2 Dampfbremse 30m	_	-	30,00	30,00		30,00
3 Sperrfunier	40	40	0,08	0,08		0,08
4 Trägerplatte	40	40	0,60	0,60		0,60
5 PUR-Hartschaum 025	30	100	0,48	1,60	->	0,48
6 Trägerplatte	40	40	0,60	0,60		0,60
7 Deckfurnier	40	40	0,08	0,08		0,08
				Σ μ*s	= -	31,92

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

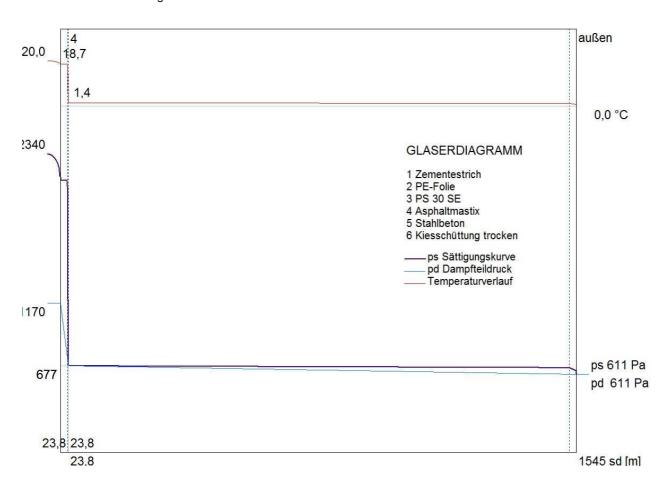

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

 $R_{min}=0.29<0.82~m^2\text{K/W}=R_{vorh},$ in Ordnung nach DIN 4108-3, A.12 Mindest-Wärmedurchlasswiderstand $R_{min}=R_{si}~^*((\theta_i$ - $\theta_e)$ / $(\theta_i$ - $\theta_s))$ - $(R_{si}+R_{se})$ GI. A.12 mit R_{si} / $R_{se}=0.25$ / 0.04 m²K/W und θ_i / $\theta_e=20$ / -5 $^{\circ}$ C nach DIN 4108-2 Abs.6.2

Tauwasserbildung im Inneren von Bauteilen (A.2)

Keine Tauwasserbildung im Bauteil. Diffusionsstromdichte = 0,020 g/m²h

Projekt Feuerw_1Zone Bauteil: KellerbodenGarage


Bauteiltyp "Fußboden gegen Erdreich" mit den Wärmeübergangswiderständen $R_{si} = 0,17$ und $R_{se} = 0,00$ m²K/W

Querschnitt

von innen	s [cm	ρ] [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,17
01 Zementestrich	4,000	2000	80,0	1,400	0,03
02 PE-Folie	0,020	1000	0,2	-	-
03 PS 30 SE	8,000	30	2,4	0,035	2,29
04 Asphaltmastix	0,700	2000	14,0	0,170	0,04
05 Stahlbeton	14,000	2400	336,0	2,100	0,07
06 Kiesschüttung trocken	6,000	1800	108,0	0,700	0,09
R _{se}					0,00
	d = 32,720) G =	540,6	R _T	= 2,68

Wärmedurchgangskoeffizient U = **0,37 W/m²K** (ohne Korrekturen)

Projekt Feuerw_1Zone Bauteil: KellerbodenGarage

Klimabedingungen gegen Erdreich

Tauperiode 1440 Stunden	Außenklima Innenklima	0,0 °C 20,0 °C	$\varphi = 100 %$ $\varphi = 50 %$
Verdunstungsperiode	Außenklima	12,0 °C	$\phi = 30 \%$ $\phi = 100 \%$
2160 Stunden	Innenklima	12,0 °C	$\phi = 70 %$

von innen	Tauperiode			
vor der Schichtgrenze	Tgr [°C]	p _S [Pa]	Pd [Pa]	
Raumluft	20,0	2340	1170	
1 Zementestrich	18,7	2158	1170	
2 PE-Folie	18,5	2132	1158	
3 PS 30 SE	18,5	2132	743	
4 Asphaltmastix	1,4	677	677	
5 Stahlbeton	1,1	662	612	
6 Kiesschüttung trocken	0,6	640	611	

	0,0	611	611
Außenluft	0,0	611	611

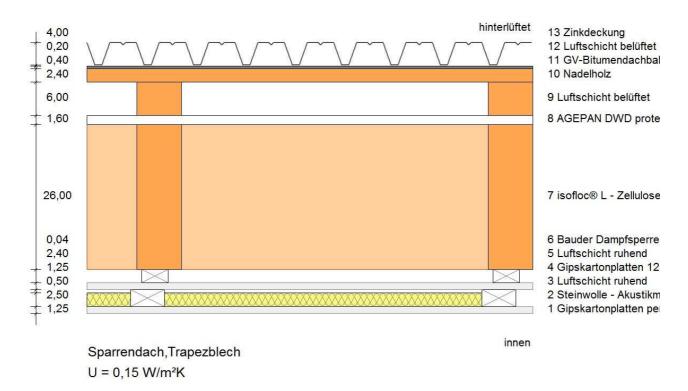
Schicht	μ _{min} [-]	μ _{max} [-]	μ _{min} *s [m]	$\mu_{ ext{max}}$ *s		sd [m]
1 Zementestrich	15	35	0,60	1,40	->	0,60
2 PE-Folie	100000	100000	20,00	20,00		20,00
3 PS 30 SE	40	100	3,20	8,00	->	3,20
4 Asphaltmastix	_	_	1500,00	1500,00		1500,00
5 Stahlbeton	70	150	9,80	21,00	<-	21,00
6 Kiesschüttung trocken	1	1	0,06	0,06		0,06
				Σ*		1511 26

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = &~0.29 < 2.51~m^2\text{K/W}~= R_{vorh}, \text{in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand}~R_{min} = &~R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit}~R_{si} / R_{se} = &~0.25 / ~0.04~m^2\text{K/W}~und}~\theta_i / ~\theta_e = ~20 / ~5~\%~nach DIN 4108-2~Abs.6.2 \end{split}$$

Tauwasserbildung im Inneren von Bauteilen (A.2)


Tauebene vor Schicht "Asphaltmastix"

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T} < zul\ m_{W,T}$ und $\ m_{W,V} > m_{W,T}$

 $\label{eq:sdef} \begin{aligned} &\text{Mindest-s}_{d}\text{-Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion:} \\ &s_{d,erf} = s_{de} * (p_i - p_e) / (p_{sw} - p_e) - s_{di} - s_{de} = 1521,06 * (1170 - 611) / (677 - 611) - 23,80 - 1521,06 = 11338,1 m \end{aligned}$

Projekt Feuerw_1Zone

Bauteil: Sparrendach, Trapezblech

Bauteiltyp "Dachdecke hinterlüftet" mit den Wärmeübergangswiderständen $R_{si}=0,10$ und $R_{se}=0,10$ m²K/W

Querschnitt

von innen		s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}						0,10
01 Gipskartonplatten perf.	1	1,250	900	11,3	0,210	0,06
02 Steinwolle - Akustikmatte	2	2,500	30	0,8	0,040	0,63
03 Luftschicht ruhend	(,500	1	0,0	-	0,11
04 Gipskartonplatten 12,5 mm	1	1,250	900	11,3	0,210	0,06
05 Luftschicht ruhend	2	2,400	1	0,0	-	0,16
06 Bauder Dampfsperre 40	(0,040	1000	0,4	-	_
07 isofloc® L - Zellulose	26	5,000	60	15,6	0,040	6,50
08 AGEPAN DWD protect	1	1,600	560	9,0	0,080	0,20
09 Luftschicht belüftet	6	5,000	1	0,1	-	_
10 Nadelholz	2	2,400	600	14,4	0,130	0,18
11 GV-Bitumendachbahn	(,400	1200	4,8	0,170	0,02
12 Luftschicht belüftet	(,200	1	0,0	-	0,00
13 Zinkdeckung	4	1,000	_	10,0	-	-
R _{se}						0,10
	d = 48	3,540	G =	77,5	R _T :	= 8,12

 $U_{Gefach} = 0.12 \text{ W/m}^2\text{K}$

Rahmenbereich

Rahmenbreite Achsabstand	zusammengesetztes Bauteil				
8,0 cm 63,0 cm	12,7 %	12,7 % 99,8 kg/m²			
Rahmenanteil von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,10
01 Gipskartonplatten perf.	1,250	900	11,3	0,210	0,06
02 Grundlattung	3,000	_	_	_	0,00
03 Gipskartonplatten 12,5 mm	1,250	900	11,3	0,210	0,06
04 Grundlattung	2,400	_	-	_	0,00
05 Bauder Dampfsperre 40	0,040	1000	0,4	_	_
06 Nadelholz	26,000	600	156,0	0,130	2,00
07 AGEPAN DWD protect	1,600	560	9,0	0,080	0,20
08 Nadelholz	6,000	600	36,0	0,130	0,46
09 Nadelholz	2,400	600	14,4	0,130	0,18
10 GV-Bitumendachbahn	0,400	1200	4,8	0,170	0,02
11 Luftschicht belüftet	0,200	1	0,0	_	0,00
12 Zinkdeckung	4,000	_	10,0	_	0,00
R _{se}					0,10
	48,540		253,1	R _T	= 3,19

 $U_{(R)} = 0.31 \text{ W/m}^2\text{K}$

Weitere Bauteilschicht mit Rahmenanteilen

Bauteilschicht	Rahmenmaterial	λ	b Achsabstand	
02 Steinwolle - Akustikmatte	Nadelholz	0,13 W/mK	4,5 cm	40,0 cm

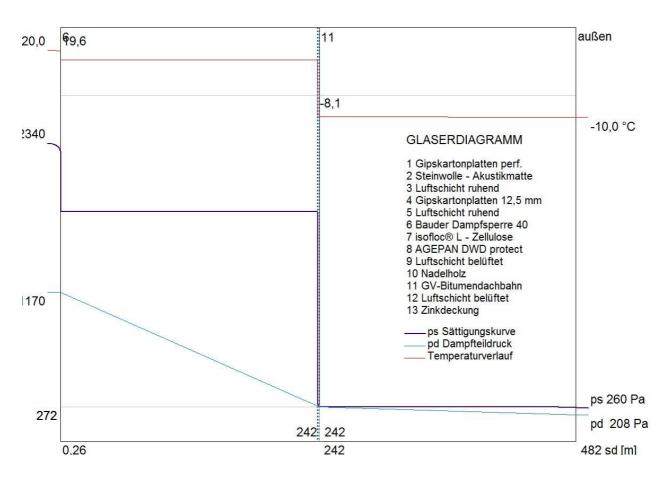
 $U_{m} = 77.5\% * 0.123 + 11.3\% * 0.313 + 9.8\% * 0.130 + 1.4\% * 0.362 = 0.15 \text{ W/m}^2\text{K}$

 $R'_{T} = 1 / U_{m} = 6,73 \text{ m}^{2}\text{K/W}$

 $R^{\prime\prime}_{T} = 0.10 + 0.06 + 0.50 + 0.00 + 0.06 + 0.01 + 0.00 + 5.05 + 0.20 + 0.00 + 0.18 + 0.02 + 0.00 + 0.00 + 0.10 = 6.29 \text{ m}^2\text{K/W} \\ R_{min} = 0.001 \text{ m}^2\text{K/W angenommen: Gefach-6 Rahmen-6 Gefach-9 Gefach-13}$

 $R_T = (R'_T + R''_T)/2 = 6,51 \text{ m}^2\text{K/W}$

Wärmedurchgangskoeffizient U = **0,15 W/m²K** (ohne Korrekturen)


Ersatz oder Erneuerung von Bauteilen in Gebäuden (EnEV)

Ersatz oder erstmaliger Einbau des Flachdachs

U $0,15 \le 0,25$ **OK**

Projekt Feuerw_1Zone

Bauteil: Sparrendach, Trapezblech

Klimabedingungen Normklimadaten DIN 4108

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

von innen	Tauperiode			
vor der Schichtgrenze	Tgr [°C]	p _S [Pa]	pd [Pa]	
Raumluft	20,0	2340	1170	
1 Gipskartonplatten perf.	19,6	2283	1170	
2 Steinwolle - Akustikmatte	19,4	2254	1170	
3 Luftschicht ruhend	17,1	1950	1170	
4 Gipskartonplatten 12,5 mm	16,7	1901	1170	
5 Luftschicht ruhend	16,5	1878	1169	
6 Bauder Dampfsperre 40	15,9	1806	1169	
7 isofloc® L - Zellulose	15,9	1806	277	

8	AGEPAN DWD protect	-8,1	306	276
9	Luftschicht belüftet	-8,9	286	276
10	Nadelholz	-8,9	286	276
11	GV-Bitumendachbahn	-9,5	272	272
12	Luftschicht belüftet	-9,6	269	208
13	Zinkdeckung	-9,6	269	208
		-9,6	269	208
	Außenluft	-10,0	260	208

	Schicht	μ _{min} [-]	μ _{max} [-]	μ _{min} *s [m]	$\mu_{ exttt{max}}$ *s		sd [m]
1	Gipskartonplatten perf.	8	8	0,10	0,10		0,10
2	Steinwolle - Akustikmatte	1	1	0,03	0,03		0,03
3	Luftschicht ruhend	1	1	0,01	0,01		0,01
4	Gipskartonplatten 12,5 mm	8	8	0,10	0,10		0,10
5	Luftschicht ruhend	1	1	0,02	0,02		0,02
6	Bauder Dampfsperre 40	600000	600000	240,00	240,00		240,00
7	isofloc® L - Zellulose	1	2	0,26	0,52	->	0,26
8	AGEPAN DWD protect	11	11	0,18	0,18		0,18
9	Luftschicht belüftet	1	1	0,06	0,06		0,06
10	Nadelholz	40	40	0,96	0,96		0,96
11	GV-Bitumendachbahn	20000	60000	80,00	240,00	<-	240,00
12	Luftschicht belüftet	1	1	0,00	0,00		0,00
13	Zinkdeckung	_	_	-	_		_

 $\Sigma \mu *s = 481,71$

Klimabedingter Feuchteschutz nach DIN 4108-3:2001

Vermeidung kritischer Feuchte auf Innenoberflächen (A.5)

$$\begin{split} R_{min} = ~0.29 < 7.92~m^2\text{K/W} &= R_{vorh}, \text{ in Ordnung nach DIN 4108-3, A.12} \\ \text{Mindest-W\"{a}rmedurchlasswiderstand}~R_{min} = R_{si}~^*((\theta_i - \theta_e) / (\theta_i - \theta_s)) - (R_{si} + R_{se}) \\ \text{GI. A.12 mit}~R_{si} / R_{se} = 0.25 / 0.04~m^2\text{K/W}~und}~\theta_i / \theta_e = 20 / -5~^{\circ}\text{C}~nach~DIN 4108-2~Abs.6.2} \end{split}$$

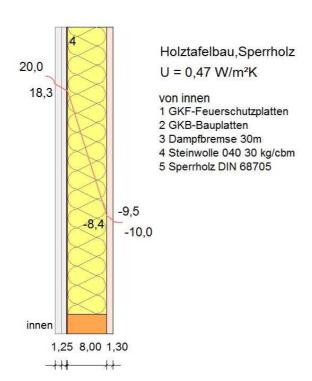
Ergänzende Informationen

Die Taupunkttemperatur der Raumluft (20,0°C 50%) be trägt $\theta_s = 9.3$ °C (DIN 4108-3, Tab A.2) Die Oberflächentemperatur bei $\theta_e = -15$ °C ist $\theta_{0i,-15}$ °C = θ_i - R_{si} / R_T * (θ_i - θ_e) = 19,6 °C

Überträgt man das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken ($f_{Rsi} \ge 0.7$) mit genormten Randbedingungen nach DIN 4108-2 auf den eindimensionalen Fall, dann erhält man: mit R_{si} / R_{se} = 0.25 / 0.04 und R_{T} = 8,21 m²K/W $\Rightarrow f_{Rsi,1D}$ = 0,97 \ge 0.7

 \Rightarrow Das Kriterium zur Vermeidung von Schimmelpilzbildung an Wärmebrücken wird eingehalten. Mit θ_i / θ_e = 20 / -5 °C und ϕ_i = 50% erhält man vorh. θ_{si} = 19,2 °C und zul. $\theta_{si,80\%}$ = 12,6 °C (mit θ_i / θ_e = +20,0 / -10,0 °C und ϕ_i = 50% wird vorh. θ_{si} = 19,1 °C und $\theta_{si,80\%}$ = 12,6 °C)

Tauwasserbildung im Inneren von Bauteilen (A.2)


Tauebene vor Schicht "GV-Bitumendachbahn"

Projekt Feuerw_1Zone gedruckt am 17.02.2008, Seite 56

Die Tauwasserbildung im Bauteil ist im Sinne von DIN 4108-3 unschädlich, da $m_{W,T} < zul\ m_{W,T}$ und $\ m_{W,V} > m_{W,T}$

 $\begin{array}{l} \mbox{Mindest-s}_{d}\mbox{-Wert einer innenliegenden Dampfsperre für eine tauwasserfreie Konstruktion:} \\ \mbox{s}_{d,erf} = \mbox{s}_{de} \mbox{ * } (\mbox{p}_{i}\mbox{-}\mbox{p}_{e}) \mbox{ / } (\mbox{p}_{sw}\mbox{-}\mbox{p}_{e}) \mbox{ - } \mbox{s}_{di}\mbox{-s}_{de} = 240,00 \mbox{ * } (1170\mbox{ - }208) \mbox{ / } (272\mbox{ - }208) \mbox{ - }241,71\mbox{ - }240,00 = 3125,8\mbox{ m} \\ \end{array}$

Projekt Feuerw_1Zone Bauteil: Holztafelbau,Sperrholz

Bauteiltyp "Außenwand" mit den Wärmeübergangswiderständen R $_{\rm Si}=0,13$ und R $_{\rm Se}=0,04$ m 2 K/W

Querschnitt

von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,13
01 GKF-Feuerschutzplatten	1,250	900	11,3	0,210	0,06
02 GKB-Bauplatten	0,950	900	8,6	0,210	0,05
03 Dampfbremse 30m	0,030	_	_	_	_
04 Steinwolle 040 30 kg/cbm	8,000	30	2,4	0,040	2,00
05 Sperrholz DIN 68705	1,300	800	10,4	0,150	0,09
R _{se}					0,04
	d = 11 530	G =	32 6	R.	= 2 36

 $U_{Gefach} = 0.42 \text{ W/m}^2\text{K}$

Rahmenbereich

Ra	hmenbreite	Achsabstand		zusammengesetztes Bauteil
	4,0 cm	62,5 cm	6,4 %	35,5 kg/m²

Rahmenanteil von innen	s [cm]	ρ [kg/m³]	[kg/m²]	λ [W/mK]	R [m²K/W]
R _{si}					0,13
01 GKF-Feuerschutzplatten	1,250	900	11,3	0,210	0,06
02 GKB-Bauplatten	0,950	900	8,6	0,210	0,05
03 Dampfbremse 30m	0,030	_	_	-	-
04 Nadelholz	8,000	600	48,0	0,130	0,62
05 Sperrholz DIN 68705	1,300	800	10,4	0,150	0,09
R _{se}					0,04
	11,530		78,2	R _T	= 0,98

 $U_{(R)} = 1,02 \text{ W/m}^2\text{K}$

 $R'_{T} = 1 / (93,60\% * 1/2,361 + 6,40\% * 1/0,977) = 2,17 \text{ m}^{2}\text{K/W}$

 $R''_{T} = 0.13+0.06+0.05+0.00+1.75+0.09+0.04 = 2.11 \text{ m}^2\text{K/W}$

 $R_{min} = 0.001 \text{ m}^2\text{K/W}$ angenommen: Gefach-3 Rahmen-3

 $R_T = (R'_T + R''_T)/2 = 2,14 \text{ m}^2\text{K/W}$

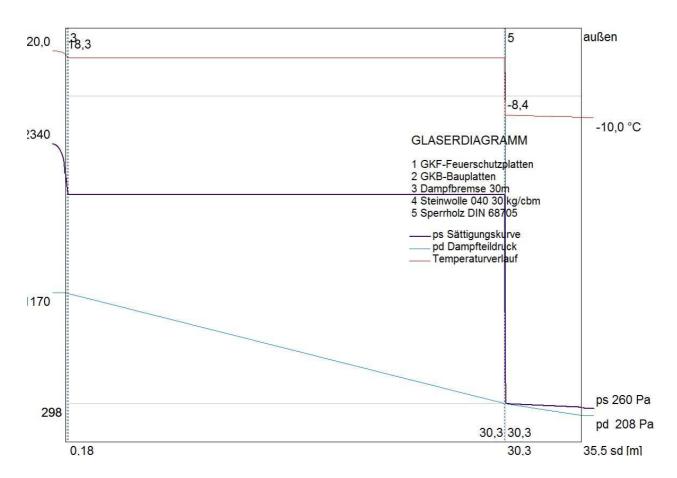
Wärmedurchgangskoeffizient U = **0,47 W/m²K** (ohne Korrekturen)

Wärmeschutznachweis nach DIN 4108-2:1981 für beheizte Aufenthaltsräume (veraltet)

 U_{Gefach} 0,42 \leq 0,64 erfüllt die Anforderungen nach DIN 4108, T2 (leichte Bauart).

Temperaturamplitudenverhältnis und Phasenverschiebung

für das Gefach und den Rahmen


	von innen	c [J/kgK]	f ₀	Rahmen	c [J/kgK]	f ₀
	GKF-Feuerschutzplatten	830	0,14	GKF-Feuerschutzplatten	830	0,14
2	? GKB-Bauplatten	830	0,11	GKB-Bauplatten	830	0,11
3	B Dampfbremse 30m	1000	-	Dampfbremse 30m	1000	-
4	Steinwolle 040 30 kg/cl	o 830	0,38	Nadelholz	2100	1,50
5	Sperrholz DIN 68705	2100	0,26	Sperrholz DIN 68705	2100	0,26

TAV = 0,3532 (35%), Temperaturamplitudendämpfung 1/TAV = 3 Phasenverschiebung ϕ = 1,350 rad (5,2 Stunden)

Die im Tagesverlauf an der äußeren Bauteiloberfläche auftretende Temperaturschwankung wird um 65 % gedämpft, z.B. bei $\Delta\vartheta_{e}$ = 60°C auf $\Delta\vartheta_{i}$ = 21,2°C. Das Temperaturmaximum erreicht um 17:09 Uhr die innere Bauteiloberfläche (siehe auch dynamische Berechnung des Temperaturdurchgangs).

TAV_{Rahmen} = 0,2854 (29%), Temperaturamplitudendämpfung 1/TAV_R = 4 Phasenverschiebung ϕ_R = 1,995 rad (7,6 Stunden)

Projekt Feuerw_1Zone Bauteil: Holztafelbau,Sperrholz

Klimabedingungen

Tauperiode	Außenklima	-10,0 °C	φ =	80 %
1440 Stunden	Innenklima	20,0 °C	φ =	50 %
Verdunstungsperiode	Außenklima	12,0 °C	φ =	70 %
2160 Stunden	Innenklima	12,0 °C	φ =	70 %

von innen	Tauperiode			
vor der Schichtgrenze	Tgr [°C]	p _s [Pa]	pd [Pa]	
Raumluft	20,0	2340	1170	
1 GKF-Feuerschutzplatten	18,3	2105	1170	
2 GKB-Bauplatten	17,6	2014	1167	
3 Dampfbremse 30m	17,0	1937	1165	
4 Steinwolle 040 30 kg/cbm	17,0	1937	301	
5 Sperrholz DIN 68705	-8,4	298	298	
	-9,5	272	208	
Außenluft	-10,0	260	208	

Schicht	$\mu_{ exttt{min}}$ [-]	μ _{max} [-]	μ _{min} *s [m]	μ _{max} *s [m]		s _d [m]
1 GKF-Feuerschutzplatten	8	8	0,10	0,10		0,10
2 GKB-Bauplatten	8	8	0,08	0,08		0,08
3 Dampfbremse 30m	_	_	30,00	30,00		30,00
4 Steinwolle 040 30 kg/cbm	1	1	0,09	0,09		0,09
5 Sperrholz DIN 68705	50	400	0,65	5,20	<-	5,20
				Σ*.α	Σ μ*α -	

 $\Sigma \mu *s = 35,46$

Projekt Feuerw_1Zone gedruckt am 17.02.2008, Seite 61