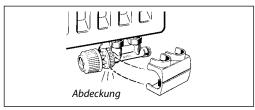


Universal-Anschlussarmatur Typ VHS für Zweirohrsysteme. Mit integriertem, voreinstellbarem Ventil, absperrbar, Anschlussmöglichkeit für Füll- und Entleerungsarmatur

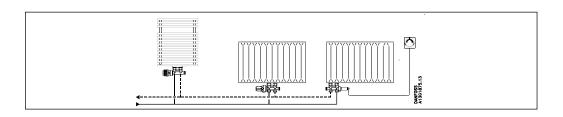
Anwendung



Die Universal-Anschlussarmatur VHS ist für Heizkörper mit einem unteren Anschluss von 50 mm einsetzbar, z.B. für Bad- und Designheizkörper. VHS* für Zweirohrsysteme kann mit den RA-, RAX-, RAW-, living eco*-, living connect*- und RAW-Fühlern, den Ferneinstell-elementen oder den elektrischen Stellantrieben TWA kombiniert werden.

In Kombination mit Danfoss Fühlerelementen sind VHS Ventile geeignet für Planungen nach DIN V 4701/10 und AP-Bereich \leq 1K (EnEV). VHS-UR kann alternativ auch in Verbindung mit einem RTX als Rücklauftemperaturbegrenzer eingesetzt werden.

Die Armatur mit integriertem, voreinstellbarem Ventil und Anschlussverschraubungen mit entleerbarer Absperrung ist schnell und einfach zu installieren.


Als Zubehör ist eine Füll- und Entleerungsarmatur lieferbar. Der Anschluss an Kupfer-, Weichstahl-, Alu-Verbund- und VPE-Kunststoffrohre erfolgt mit Danfoss Klemmverbindern.

Um eine optisch saubere Anbindung am Heizkörper zu ermöglichen, sind Kunststoff-Abdeckungen in den Farben Chrom und RAL 9016 (Verkehrsweiß) erhältlich. Die Ausführung RAL 9016 ist nasslackierbar.

Zur Vermeidung von Steinbildung und Korrosion sollte die Zusammensetzung des Heizwassers der VDI-Richtlinie 2035 entsprechen.

Anlagenprinzip

Bestellung und Daten

Тур	Bestell-Nr.	Ausführung	Anschluss		Einstellung, k _v -Werte mit RA 2000 Fühler, m³/h¹¹²¹								Mit Stell- antrieb	
			нк	Anlage	X _p	1	2	3	4	5	6	7	N	N(k _{vs})
VHS-UN 15	013G4741 013G4742	Eck Durchgang	R 1/2"	- G 3⁄4"3)4)	X _p =1 X _p =2	0,02 0,03	0,03 0,03	0,06 0,06	0,11 0,12	0,16 0,17	0,20 0,23	0,24 0,30	0,31 0,47	0,57 0,57
	013G4743 013G4744	Eck Durchgang	G ¾ "A4)											
VHS-UR 15*	013G4689	Eck	R 1/2"	G ¾ A³)										

^{*} Für umgekehrte Fließrichtung

Technische Daten: Max. Betriebsdruck: 10 bar, Max. technischer Differenzdruck 5: 0,6 bar, Prüfdruck 16 bar, Max. Wassertemperatur: 120 °C

- ¹⁾ Die k_v -Werte geben die Strömungsmenge (\dot{V}) in m³/h bei einem Druck abfall (Δp) durch das Ventil von 1 bar an. $k_v = \dot{V} : \sqrt{\Delta p}$. Die k_v -Werte geben \dot{V} bei vollem Hub d.h. bei voll geöffnetem Ventil an.
- Wenn das RAW-Fühlerelement/Ferneinstellelement verwendet wird, verringert sich der kv-Wert bei gleichbleibendem P-Band.

Тур	k_v bei $X_p = 1$	k_v bei $X_p = 2$	k _{vs}
VHS-UN 15	0,24	0,39	0,57

3) Der Ventileintritt ist vorbereitet für Klemmverbinder.

- 4) Gehäuse G 3/4 Gewindeanschluss mit Konusgeometrie nach
- ⁵⁾ Der max. Differenzdruck gibt die Einsatzgrenzen für eine optimale Regelung an. Um einen geräuschlosen Betrieb zu gewährleisten wird die Auswahl einer Pumpe empfohlen, die nur den zur Umwälzung der notwendigen Wassermenge benötigten Druck zur Verfügung stellt. Erfahrungsgemäß genügt in den meisten Anlagen ein Differenzdruck über den Ventilen von 0,05-0,2 bar. Der Differenzdruck kann durch Anwendung eines Danfoss Differenzdruckreglers reduziert werden.

Anschlussarmatur Typ VHS

Voreinstellung

Bei voreinstellbaren Danfoss Ventilgehäusen lassen sich die dimensionierten Einstellwerte ohne Werkzeug einfach und exakt einstellen:

- Bauschutzkappe bzw. Fühlerelement demontieren.
- Einstellring anheben.
- Einstellring gemäß der eingravierten Skala gegen den Uhrzeigersinn auf den berechneten Einstellwert drehen.
- · Einstellring einrasten lassen.

Die Einstellmarke zeigt immer exakt in Richtung Heizkörperanschluss.

Die Voreinstellung kann in Stufen von 0,5 zwischen 1 und 7 gewählt werden. Bei Einstellung N ist die Voreinstellung aufgehoben (Spülmöglichkeit und Inbetriebnahmestellung).

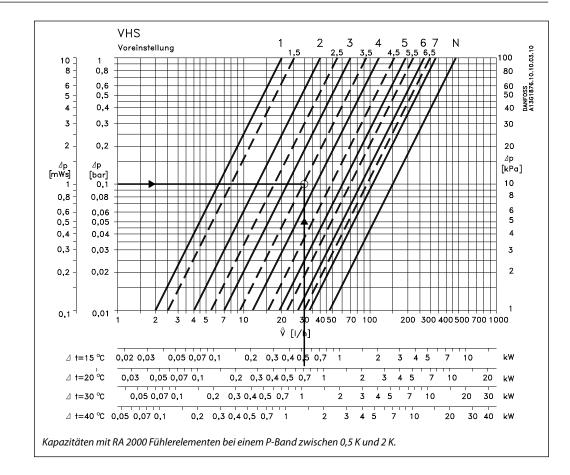
Durch Verwendung der Diebstahlsicherung am Fühlerelement wird ein Missbrauch der Voreinstellung verhindert.

Kapazität

VHS hat einen Kapazitätsbereich, der an die heute üblichen Heizkörperleistungen angepasst ist.

Dimensionierungsbeispiel:

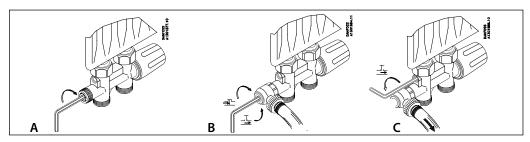
Wärmebedarf Q = 0,7 kW Temperaturspreizung ΔT = 20 K Volumenstrom durch Heizkörper:


$$\mathring{V} = \frac{0.7}{20 \times 1.16} = 0.03 \text{ m}^3/\text{h} = 30 \text{ l/h}$$

Erforderlicher k_V-Wert / Voreinstellung bei einem Druckabfall über dem Ventil von 0,1 bar:

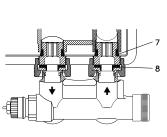
$$k_V \ = \frac{\mathring{V} \, (m^3/h)}{\sqrt{\Delta p} \, (bar)} = \frac{0,\!03}{\sqrt{0,\!1}} = \ 0,\!095 \; m^3/h$$

Voreinstellung: 3,5

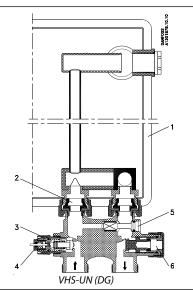

Kapazitäten

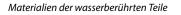
Anschlussarmatur Typ VHS für Zweirohrsysteme

Entleerung der Heizkörper

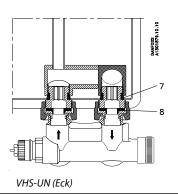

Hinweis. Der statische Druck darf 10 bar nicht überschreiten. Wenn die Anlage unter Druck steht, muss das Fühlerelement sicherheitshalber vorübergehend durch ein Spezial-Handversteller (Bestell-Nr. 013G3300) ersetzt werden. Zur Entleerung wird zunächst die Abdeck-kappe der Armatur abgeschraubt und der Rücklauf abgesperrt (A).

Nach Aufschrauben der Entleerungsarmatur kann diese durch Linksdrehung des Sechskants geöffnet werden (B). Das im Heizkörper vorhandene Vorlauf-Steigrohr kann durch Lösen der Innensechskantschraube (C) ebenfalls entleert werden.

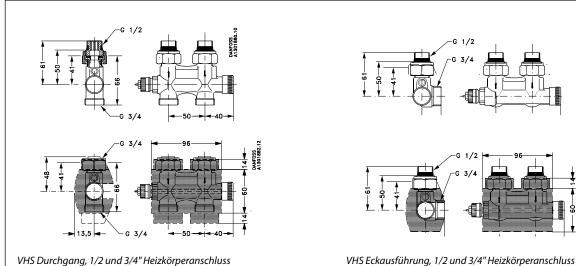

Die mitgelieferte Schlauchtülle ist nach allen Seiten frei drehbar.

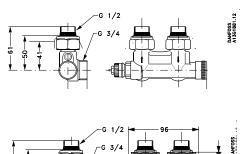

Konstruktion

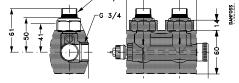
- 1. Heizkörper
- 2. Dichtkonus
- 3. Voreinstellbarer Ventileinsatz, Typ RA-UN
- 4. Stopfbuchse
- 5. Entleerungsschraube für Steigrohr
- 6. Absperrung /Entleerung für Rücklauf
- Anschlussnippel (selbstdichtend)
- 8. Flachdichtung



VHS-UR (umgekehrte Fließrichtung)



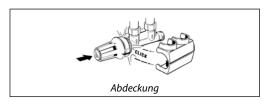

Ventilgehäuse und übrige Metallteile	Ms 58
O-Ringe	EPDM



Abmessungen

Abdeckungen sind schraffiert dargestellt.

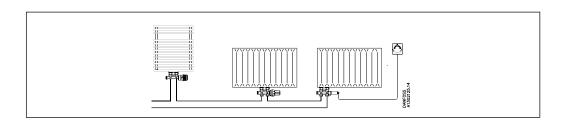
Universal-Anschlussarmatur Typ VHS-E für Einrohrsysteme, absperrbar und entleerbar


Anwendung

Die Universal-Anschlussarmatur VHS kann für alle Heizkörper eingesetzt werden, die einen unteren Anschluss mit einem Abstand von 50 mm haben. Dies gilt für Ventil/ Universalheizkörper und viele Bad/Design-heizkörper.

VHS-E für Einrohrsysteme hat einen festen Heizkörperanteil von 40 % des Volumenstroms. Die Armatur kann mit den RA-, RAW- und RA PLUS- Fühlern oder, den elektrischen Stellantrieben TWA oder ABNM kombiniert werden.

Um eine Rückerwärmung in Einrohranlagen zu vermeiden, wird die Montage einer Zirkulationsbremse (003L0296) empfohlen.


Als Zubehör ist eine Füll- und Entleerungsarmatur lieferbar. Der Anschluss an Kupfer-, Weichstahl-, Alu-Verbund- und VPE-Kunststoffrohre erfolgt mit Danfoss Klemmverbindern.

Um eine optisch ansprechende Anbindung am Heizkörper zu ermöglichen, sind Kunststoff-Abdeckungen in den Farben Chrom und RAL 9016 (Verkehrsweiß) erhältlich. Die Ausführung RAL 9016 ist nasslackierbar.

Für die Eckversion steht eine Verkleidung zur Verfügung, die in Verbindung mit dem RA-Element eine optimale Lösung darstellt, insbesondere für Badheizkörper.

Zur Vermeidung von Steinbildung und Korrosion sollte die Zusammensetzung des Heizwassers der VDI-Richtlinie 2035 entsprechen.

Anlagenprinzip

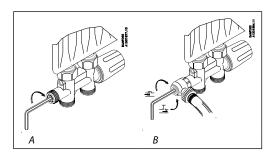
Bestellung und Daten

VHS-E	Anschluss IS	V 1)	Bestell- Nr.		
VH3-E	Heizkörper	Anlage	K _{vs} ¹⁾	Desteil- Mi.	
Für Bodenanschluss (DG)	R _p 1/2 Innengewinde G 3/4 Außengewinde	G 3/4 A ²⁾	1.2	013G4692 013G4694	
Für Wandanschluss (Eck)	R _p 1/2 Innengewinde G 3/4 Außengewinde	G 3/4 A ^{2/}	1,2	013G4691 013G4693	

Technische Daten:

Max. Wassertemperatur: 120°C, Empfohlener Differenzdruck: 0,05-0,2 bar, Max. technischer Differenzdruck³⁾: 0,6 bar, Prüfdruck: 16 bar, Betriebsdruck: 10 bar

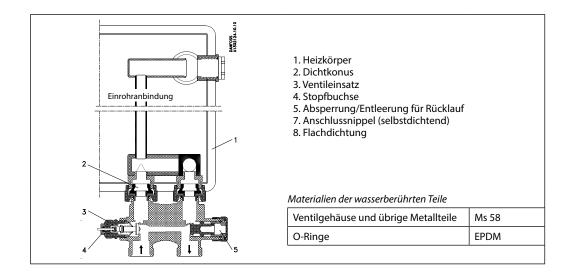
¹⁾ Die k_V -Werte geben den Volumenstrom (\mathring{V}) in m^3 /h bei einem Druckabfall (Δp) durch das Ventil von 1 bar an. $k_{VS} = k_V$ Bypass + k_V Heizkörper. Max. Volumenstrom (\mathring{V}) durch Heizkörper etwa 40 %.


²⁾ Gehäuse G ¾ Gewindeanschluss mit Konusgeometrie nach DIN V 3838.

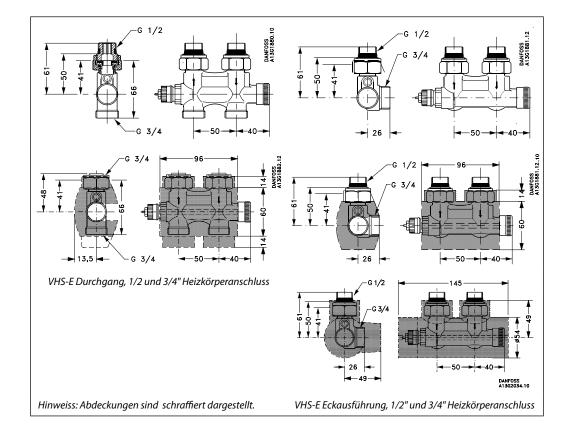
³⁾ Der max. technische Differenzdruck gibt die Einsatzgrenzen für eine optimale Regelung an. Um einen geräuscharmen Betrieb zu gewährleisten, ist der empfohlene Auslegungsdifferenzdruck zu beachten. Um einen geräuschlosen Betrieb zu gewährleisten wird die Auswahl einer Pumpe empfohlen, die nur den zur Umwälzung der notwendigen Wassermenge benötigten Druck zur Verfügung stellt. Erfahrungsgemäß genügt in den meisten Anlagen ein Differenzdruck über den Ventilen von 0,05-0,2 bar. In Einrohranlagen sollten die Kreise mit Strangventilen des Typs AB-QM abgeglichen werden.

Anschlussarmatur Typ VHS-E für Einrohrsysteme

Entleerung der Heizkörper


Wenn die Anlage unter Druck steht, muss das Fühlerelement sicherheitshalber vorübergehend gegen ein Handrad ersetzt werden (Bestell-Nr. 013G5002). Zur Entleerung wird zunächst die Abdeckkappe der Armatur abgeschraubt und der Rücklauf abgesperrt (A).

Nach Aufschrauben der Entleerungsarmatur kann diese durch Linksdrehung des Vierkants geöffnet werden (B).


Hinweis:

Der statische Druck darf 10 bar nicht überschreiten.

Konstruktion

Abmessungen

Anschlussarmatur, Typ VHS und VHS-E für Ein- und Zweirohrsysteme

Zubehör

Produkt		Bestell-Nr.
	Abdeckung* für VHS Ventil für Badheizkörper, Durchgang Farbe RAL 9016 (Verkehrsweiß), für Nasslackierung geeignet	013G4674
	Abdeckung für VHS Ventil für Badheizkörper, Durchgang, Farbe Chrom	013G4780
	Abdeckung* für VHS Ventil für Badheizkörper, Eck Farbe RAL 9016 (Verkehrsweiß), für Nasslackierung geeignet	013G4673
	Abdeckung für VHS Ventil für Badheizkörper, Eck, Farbe Chrom	013G4779
9	Dichtkonus inkl. Dichtung für Ventilheizkörper mit G ¾ AG, Liefereinheit 20 Stück	003L0294
8	Selbstdichtender Anschlussnippel für Ventilheizkörper mit G ½ IG, Liefereinheit 20 Stück	003L0295
$\bigcirc \bigcirc$	Doppelrosette (PVC) für Rohrdurchmesser Ø 12-24 mm. Mittenabstand 50 mm	192H0161
	Handversteller für alle RA Ventilgehäuse. Ventildifferenzdruck max. 0,6 bar, Liefereinheit 18 Stück	013G5002
	Spezialhandversteller für Differerenzdruck bis 10 bar	013G3300
	Ventileinsatz für VHS-E	013G3070
	Füll- und Entleerungsarmatur mit 3/4" Außengewinde und Schlauchtülle, Liefereinheit 5 Stück	003L0152
	Abdeckkappe für VHS-E (vernickelt), Liefereinheit 10 Stück	003L0103
0	Zirkulationsbremse für Einrohranlagen	003L0296

^{*} Erfordert einen Fühler mit Schnappbefestigung.

VHS ist für den Anschluss von Kupfer-, Weichstahl-, VPE-Kunstoff- und Alu-Verbundrohren geeignet. Der Anschluss erfolgt mit Hilfe von Danfoss Klemmverbindern.